ABB RELION SMU615 Technical Manual

Substation merging unit
Hide thumbs Also See for RELION SMU615:
Table of Contents

Advertisement

Quick Links

®
RELION
Substation Merging Unit SMU615
Technical Manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB RELION SMU615

  • Page 1 — ® RELION Substation Merging Unit SMU615 Technical Manual...
  • Page 3 Document ID: 1MRS758407 Issued: 2022-09-30 Revision: C Product version: 1.0 © Copyright 2022 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.
  • Page 5 Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
  • Page 6 Directive 2014/30/EU) and concerning electrical equipment for use within specified voltage limits (Low- voltage directive 2014/35/EU). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Contents Contents Introduction..................... 14 This manual.............................14 Intended audience..........................14 Product documentation........................15 1.3.1 Product documentation set....................15 1.3.2 Document revision history....................15 1.3.3 Related documentation......................15 Symbols and conventions........................16 1.4.1 Symbols........................... 16 1.4.2 Document conventions......................16 1.4.3 Functions, codes and symbols....................16 SMU615 overview..................20 Overview..............................
  • Page 8 Contents 3.1.10 General system settings...................... 36 3.1.11 HMI settings........................... 37 3.1.12 IEC 61850-8-1 MMS settings....................37 Self-supervision............................. 37 3.2.1 Internal faults......................... 38 3.2.2 Warnings..........................43 Programmable LEDs..........................44 3.3.1 Function block........................44 3.3.2 Functionality.......................... 44 3.3.3 Signals............................. 47 3.3.4 Settings...........................48 3.3.5 Monitored data........................50 Time synchronization..........................51 3.4.1 Time master supervision GNRLLTMS................
  • Page 9 Contents 3.12.1 QTY_GOOD function block ....................75 3.12.2 QTY_BAD function block ..................... 76 3.12.3 QTY_GOOSE_COMM function block ..................77 3.12.4 T_HEALTH function block ....................78 3.12.5 T_F32_INT8 function block....................79 3.12.6 T_DIR function block......................79 3.12.7 T_TCMD function block......................80 3.12.8 T_TCMD_BIN function block ....................81 3.12.9 T_BIN_TCMD function block ....................82 3.13...
  • Page 10 Contents 5.1.6 Signals........................... 143 5.1.7 Settings..........................144 5.1.8 Monitored data........................144 5.1.9 Technical revision history....................144 Current circuit supervision CCSPVC....................144 5.2.1 Identification........................144 5.2.2 Function block........................145 5.2.3 Functionality.........................145 5.2.4 Operation principle......................145 5.2.5 Application..........................147 5.2.6 Signals............................151 5.2.7 Settings..........................152 5.2.8 Monitored data........................152 5.2.9 Technical data ........................
  • Page 11 Contents 6.1.6 Signals............................176 6.1.7 Settings..........................178 6.1.8 Monitored data........................179 6.1.9 Technical data ........................180 6.1.10 Technical revision history....................181 Measurement functions................182 Basic measurements...........................182 7.1.1 Functions..........................182 7.1.2 Measurement functionality....................182 7.1.3 Measurement function applications................190 7.1.4 Three-phase current measurement CMMXU..............190 7.1.5 Three-phase voltage measurement VMMXU..............195 7.1.6...
  • Page 12 Contents 8.2.4 Operation principle......................243 8.2.5 Application........................... 243 8.2.6 Signals........................... 243 8.2.7 Settings..........................244 8.2.8 Monitored data........................245 8.2.9 Technical revision history....................246 General function block features............247 Frequency measurement........................247 Measurement modes..........................247 Calculated measurements........................ 248 10 Merging unit's physical connections..........250 10.1 Module slot numbering........................250 10.2 Protective earth connections ......................
  • Page 13 Contents 12.2 Insulation tests............................ 265 12.3 Mechanical tests..........................266 12.4 Environmental tests........................... 266 12.5 Product safety............................. 266 12.6 EMC compliance..........................267 Applicable standards and regulations..........268 14 Glossary....................269 SMU615 Technical Manual...
  • Page 14: Introduction

    Introduction 1MRS758407 C Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 15: Product Documentation

    Figure 1: The intended use of documents during the product life cycle 1.3.2 Document revision history Document revision/date Product version History A/2017-09-28 First release B/2019-05-17 Content updated C/2022-09-30 Content updated 1.3.3 Related documentation Contact ABB for information on SMU615 related documentation. SMU615 Technical Manual...
  • Page 16: Symbols And Conventions

    Introduction 1MRS758407 C Symbols and conventions 1.4.1 Symbols The electrical warning icon indicates the presence of a hazard which could result in electrical shock. The warning icon indicates the presence of a hazard which could result in personal injury. The caution icon indicates important information or warning related to the concept discussed in the text.
  • Page 17: Functions, Codes And Symbols

    1MRS758407 C Introduction 1.4.3 Functions, codes and symbols Table 1: Functions included in the merging unit Function IEC 61850 IEC 60617 IEC-ANSI Measurement Disturbance recorder RDRE1 DR (1) DFR (1) Three-phase current measurement CMMXU1 3I (1) 3I (1) Sequence current measurement CSMSQI1 I1, I2, I0 (1) I1, I2, I0 (1)
  • Page 18 Introduction 1MRS758407 C Function IEC 61850 IEC 60617 IEC-ANSI Earthing switch indication ESSXSWI1 I <-> O ES (1) I <-> O ES (1) Other Minimum pulse timer (2 pcs) TPGAPC1 TP (1) TP (1) TPGAPC2 TP (2) TP (2) TPGAPC3 TP (3) TP (3) TPGAPC4...
  • Page 19 1MRS758407 C Introduction Function IEC 61850 IEC 60617 IEC-ANSI TRPPTRC3 Master Trip (3) 94/86 (3) TRPPTRC4 Master Trip (4) 94/86 (4) TRPPTRC5 Master Trip (5) 94/86 (5) SMU615 Technical Manual...
  • Page 20: Smu615 Overview

    • Protection and Control IED Manager PCM600 2.7 or later • SMU615 Connectivity Package Ver.1.0 or later Contact ABB for information on the latest connectivity package. Local HMI The LHMI is used for monitoring the merging unit. The LHMI comprises the push button, LED indicators and communication port.
  • Page 21: Leds

    1MRS758407 C SMU615 overview Figure 2: Example of the LHMI 2.2.1 LEDs The LHMI includes a dedicated Ready LED indicator and 11 matrix programmable LEDs on front of the LHMI. The LEDs can be configured with PCM600 and the operation mode can be selected via WHMI or PCM600.
  • Page 22: Web Hmi

    SMU615 overview 1MRS758407 C Figure 3: LHMI command push button and RJ-45 communication port Web HMI The WHMI allows secure access to the merging unit via a Web browser. When the Secure Communication parameter in the merging unit is activated, the Web server is forced to take a secured (HTTPS) connection to WHMI using TLS encryption.
  • Page 23: Authorization

    1MRS758407 C SMU615 overview • Locally by connecting the laptop to the merging unit via the front communication port. • Remotely over LAN/WAN. WHMI is enabled by default on the rear port and always enabled (cannot be disabled) on the front port. If the WHMI is accessed locally via the front communication port, the following features are available.
  • Page 24 SMU615 overview 1MRS758407 C events and changes in the merging unit. Both audit trail events and process related events can be examined and analyzed in a consistent method with the help of Event List in WHMI and Event Viewer in PCM600. The merging unit stores 2048 audit trail events to the nonvolatile audit trail.
  • Page 25: Communication

    1MRS758407 C SMU615 overview PCM600 Event Viewer can be used to view the audit trail events and process related events. Audit trail events are visible through dedicated Security events view. Since only the administrator has the right to read audit trail, authorization must be used in PCM600.
  • Page 26: Ethernet Redundancy

    SMU615 overview 1MRS758407 C through these protocols. However, some communication functionality, for example, horizontal communication between the merging units, is only enabled by the IEC 61850 communication protocol. The IEC 61850 communication implementation supports all monitoring and control functions. Additionally, parameter settings and disturbance recordings can be accessed using the IEC 61850 protocol.
  • Page 27 1MRS758407 C SMU615 overview COM600 SCADA Ethernet switch Ethernet switch IEC 61850 PRP Figure 5: PRP solution In case a laptop or a PC workstation is connected as a non-PRP node to one of the PRP networks, LAN A or LAN B, it is recommended to use a redundancy box device or an Ethernet switch with similar functionality between the PRP network and SAN to remove additional PRP information from the Ethernet frames.
  • Page 28: Process Bus

    SMU615 overview 1MRS758407 C Figure 6: HSR solution 2.5.2 Process bus Process bus IEC 61850-9-2 defines the transmission of Sampled Measured Values within the substation automation system. International Users Group created a guideline IEC 61850-9-2 LE that defines an application profile of IEC 61850-9-2 to facilitate implementation and enable interoperability.
  • Page 29 1MRS758407 C SMU615 overview Protection and Substation Control Relay Merging Unit Current Sensors Figure 7: SMU615 sending current measurements as sampled measured values to a protection relay SMU615 Technical Manual...
  • Page 30 SMU615 overview 1MRS758407 C Protection and Substation Control Relay Merging Unit Voltage Sensor Current Sensors Figure 8: SMU615 sending voltage measurements as sampled measured values to protection relays SMU615 Technical Manual...
  • Page 31 1MRS758407 C SMU615 overview Smart Substation Control and Protection Substation Merging Unit with Binary I/0 SMV and GOOSE Current Sensors Figure 9: Smart substation control and protection SSC600 with SMU615 The merging unit supports IEC 61850 process bus with sampled values of analog currents and voltages.
  • Page 32: Secure Communication

    SMU615 overview 1MRS758407 C Primary Secondary IEEE 1588 v2 IEEE 1588 v2 master clock master clock (optional) Managed HSR Managed HSR Ethernet Ethernet switch switch IEC 61850 Backup 1588 master clock Figure 10: Example network topology with process bus, redundancy and IEEE 1588 v2 time synchronization The process bus is available for all merging units.
  • Page 33: Basic Functions

    1MRS758407 C Basic functions Basic functions General parameters 3.1.1 Analog input settings, phase currents Table 5: Analog input settings, phase currents Parameter Values (Range) Unit Step Default Description Primary current 1.0...6000.0 100.0 Rated primary current Secondary current 2=1A 2=1A Rated secondary current 3=5A Amplitude Corr A 0.9000...1.1000...
  • Page 34: Authorization Settings

    Basic functions 1MRS758407 C Table 7: Analog input settings, phase voltages Parameter Values (Range) Unit Step Default Description Primary voltage 0.100 ... 440.000 0.001 20.000 Primary rated volt- Secondary voltage 60...210 Secondary rated voltage VT connection 2=Delta Voltage transducer 1=Wye measurement con- 2=Delta nection...
  • Page 35: Binary Input Settings

    1MRS758407 C Basic functions Parameter Values (Range) Unit Step Default Description Remote override 0=False 1=True Disable authority 1=True Remote viewer Set password Remote operator Set password Remote engineer Set password Remote administrator Set password Local viewer Set password Local operator Set password Local engineer Set password...
  • Page 36: Binary Input Settings In Card Location Xnnn

    Basic functions 1MRS758407 C Table 11: Binary output signals in card location Xnnn Name Type Default Description Xnnn-Pmm BOOLEAN 0=False See the application manual for standard configuration spe- cific terminal connections 3.1.7 Binary input settings in card location Xnnn Table 12: Binary input settings in card location Xnnn Name Value Unit...
  • Page 37: Hmi Settings

    1MRS758407 C Basic functions Parameter Values (Range) Unit Step Default Description 2=60Hz Phase rotation 1=ABC 1=ABC Phase rotation order 2=ACB Bay name SMU615 Bay name in system 3.1.11 HMI settings Table 16: HMI settings Parameter Values (Range) Unit Step Default Description FB naming conven- 1=IEC61850...
  • Page 38: Internal Faults

    Basic functions 1MRS758407 C as the relay scheme’s ability to refrain from operating when not required. The dependability is increased by letting the system operators know about the problem, giving them a chance to take the necessary actions as soon as possible. The security is increased by preventing the relay from making false decisions, such as issuing false control commands.
  • Page 39 Figure 11: Output contact The internal fault code indicates the type of internal relay fault. When a fault appears, the code must be recorded so that it can be reported to ABB customer service. Table 18: Internal fault indications and codes...
  • Page 40 Basic functions 1MRS758407 C Fault indication Fault Additional Fast self- Slow 10 Immediate Action in permanent fault state code information recovery min self- permanen attempt recovery (# t IRF- (# of mode attempts) attempts) Internal Fault File Start up error or Yes (2) Yes (3) Restart the relay.
  • Page 41 1MRS758407 C Basic functions Fault indication Fault Additional Fast self- Slow 10 Immediate Action in permanent fault state code information recovery min self- permanen attempt recovery (# t IRF- (# of mode attempts) attempts) relay normal operation. If not recov- er by restarting, exchange the com- munication module including ARC inputs in slot X000.
  • Page 42 Basic functions 1MRS758407 C Fault indication Fault Additional Fast self- Slow 10 Immediate Action in permanent fault state code information recovery min self- permanen attempt recovery (# t IRF- (# of mode attempts) attempts) this. Detach the ethernet communi- cation cable(s) from the communi- cation module and reboot the relay.
  • Page 43: Warnings

    WHMI. If a warning appears, record the name and code so that it can be provided to ABB customer service. Table 19: Warning indications and codes...
  • Page 44: Programmable Leds

    Basic functions 1MRS758407 C Warning indication Warning Additional information code Warning Too many connections in the configuration. Logic error Warning Error in the SMT connections. SMT logic error Warning Error in the GOOSE connections. GOOSE input error ACT error Error in the ACT connections. Warning Error in the GOOSE message receiving.
  • Page 45 1MRS758407 C Basic functions Figure 13: Programmable LEDs on the right side of the LHMI All the programmable LEDs in the HMI of the merging unit have two colors, green and red. For each LED, the different colors are individually controllable. Each LED has two control inputs, ALARM and OK.
  • Page 46 Basic functions 1MRS758407 C Figure 14 The menu structure for the programmable LEDs is presented in . The Alarm colour for all ALARM inputs is in the General common color selection setting menu, while the LED-specific settings are under the LED-specific menu nodes. Programmable LEDs General Alarm color...
  • Page 47: Signals

    1MRS758407 C Basic functions Activating signal Acknow. Figure 17: Operating sequence "Latched-S" "LatchedAck-F-S": Latched, Flashing-ON This mode is a latched function. At the activation of the input signal, the alarm starts flashing. After acknowledgement, the alarm disappears if the signal is not present and gives a steady light if the signal is present.
  • Page 48: Settings

    Basic functions 1MRS758407 C Name Type Default Description BOOLEAN 0=False Ok input for LED 4 ALARM BOOLEAN 0=False Alarm input for LED 4 RESET BOOLEAN 0=False Reset input for LED 4 BOOLEAN 0=False Ok input for LED 5 ALARM BOOLEAN 0=False Alarm input for LED 5 RESET...
  • Page 49 1MRS758407 C Basic functions Parameter Values (Range) Unit Step Default Description Description Programmable LEDs LED 1 Programmable LED descrip- tion Alarm mode 0=Follow-S 0=Follow-S Alarm mode for programma- ble LED 2 1=Follow-F 2=Latched-S 3=LatchedAck-F-S Description Programmable LEDs LED 2 Programmable LED descrip- tion Alarm mode 0=Follow-S...
  • Page 50: Monitored Data

    Basic functions 1MRS758407 C Parameter Values (Range) Unit Step Default Description Description Programmable LEDs LED 9 Programmable LED descrip- tion Alarm mode 0=Follow-S 0=Follow-S Alarm mode for programma- ble LED 10 1=Follow-F 2=Latched-S 3=LatchedAck-F-S Description Programmable LEDs LED 10 Programmable LED descrip- tion Alarm mode 0=Follow-S...
  • Page 51: Time Synchronization

    1MRS758407 C Basic functions Name Type Values (Range) Unit Description Programmable LED 8 Enum Status of programma- 0=None ble LED 8 1=Ok 3=Alarm Programmable LED 9 Enum Status of programma- 0=None ble LED 9 1=Ok 3=Alarm Programmable LED 10 Enum Status of programma- 0=None ble LED 10...
  • Page 52 Basic functions 1MRS758407 C the frame format used is IEEE 802.3 Ethernet frames with 88F7 Ethertype as PTP announce mode communication service and the delay mechanism is P2P. determines the format of PTP announce frames sent by the merging unit when acting as 1588 master, with options “Basic IEEE1588”...
  • Page 53 1MRS758407 C Basic functions Parameter Values (Range) Unit Step Default Description 5=MM/DD/YYYY 6=YYYY-MM-DD 7=YYYY-DD-MM 8=YYYY/DD/MM Table 25: Time settings Parameter Values (Range) Unit Step Default Description Synch source 3=IEEE 1588 Time synchronization 0=None source 3=IEEE 1588 PTP domain ID 0...255 The domain is identi- fied by an integer, the domainNumber, in the...
  • Page 54: Test Mode

    Basic functions 1MRS758407 C Parameter Values (Range) Unit Step Default Description 9=September 10=October 11=November 12=December DST on day (week- 0=reserved Daylight saving 0=reserved day) time on, day of 1=Monday week 2=Tuesday 3=Wednesday 4=Thursday 5=Friday 6=Saturday 7=Sunday DST off time 0...23 Daylight saving (hours) time off, time (hh)
  • Page 55: Function Blocks

    1MRS758407 C Basic functions 3.5.1 Function blocks TEST_MODE BEH_TEST BEH_BLK Figure 20: Function blocks 3.5.2 Functionality The mode of all the logical nodes in the merging unit's IEC 61850 data model can Test mode . Test mode is selected through one common parameter be set with Test mode can only be set through via the HMI path Tests >...
  • Page 56: Control Mode

    Basic functions 1MRS758407 C 3.5.3 Application configuration and Test mode The physical outputs from control commands to process are blocked with ”IED blocked” and “IED test and blocked” modes. If physical outputs need to be blocked from the other functions, the application configuration must be used to block these signals.
  • Page 57: Lhmi Indications

    1MRS758407 C Basic functions Table 30: Remote test mode Remote test mode 61850-8-1-MMS WHMI/PCM600 No access No access Maintenance Command originator category mainte- No access nance All levels All originator categories 3.5.7 LHMI indications The green Ready LED flashes to indicate that the “IED test and blocked” mode or "IED test"...
  • Page 58: Nonvolatile Memory

    Sensor's rating plate and/or sensor routine test protocol. If the correction factors are not available, contact the sensor manufacturer for more information. Figure 21: Example of ABB Rogowski current sensor KECA 80 D85 rating plate SMU615 Technical Manual...
  • Page 59 1MRS758407 C Basic functions Current (Rogowski) sensor setting example In this example, an 80 A/0.150 V at 50 Hz (0.180 V at 60 Hz) sensor, such as Figure 21 the example shown in , is used in a 50 Hz electrical network. The application has a 150 A nominal current (In) corresponding to the protected object’s nominal current.
  • Page 60 Basic functions 1MRS758407 C the linear measurement range. Furthermore, the effect on protection functions utilizing inverse time characteristics should be considered. The upper limit of the linear measurement range depends on the selected Table application nominal current and the type of the current sensor used. shows the limits for an 80A/150mV 50Hz sensor.
  • Page 61: Binary Input

    Primary voltage parameter is set to 10 kV. For protection relays with sensor Voltage input type is set to "Voltage sensor". The measurement support, the VT connection parameter is set to the "WYE" type. The division ratio for ABB Division ratio parameter is voltage sensors is most often 10000:1. Thus, the usually set to "10000".
  • Page 62: Binary Input Inversion

    Basic functions 1MRS758407 C Filtered input signal Filter time Input signal Figure 23: Binary input filtering At the beginning, the input signal is at the high state, the short low state is filtered and no input state change is detected. The low state starting from the time t exceeds the filter time, which means that the change in the input state is detected and the time tag attached to the input change is t .
  • Page 63: Oscillation Suppression

    1MRS758407 C Basic functions 3.8.3 Oscillation suppression Oscillation suppression is used to reduce the load from the system when a binary input starts oscillating. A binary input is regarded as oscillating if the number of valid state changes (= number of events after filtering) during one second is equal to or greater than the set oscillation level value.
  • Page 64 Basic functions 1MRS758407 C 3.9.1 Power output contacts Power output contacts are normally used for energizing the breaker closing coil and trip coil, external high burden lockout or trip relays. 3.9.1.1 Dual single-pole power outputs PO1 and PO2 Dual (series-connected) single-pole (normally open/form A) power output contacts PO1 and PO2 are rated for continuous current of 8 A.
  • Page 65 1MRS758407 C Basic functions X100 TCS1 TCS2 Figure 25: Double-pole power outputs PO3 and PO4 with trip circuit supervision Power outputs PO3 and PO4 are included in the power supply module located in slot X100 of the merging unit. 3.9.1.3 Dual single-pole high-speed power outputs HSO1, HSO2 and HSO3 HSO1, HSO2 and HSO3 are dual parallel connected, single-pole, normally open/form A high-speed power outputs.
  • Page 66: Signal Output Contacts

    Basic functions 1MRS758407 C X110 HSO1 HSO2 HSO3 Figure 26: High-speed power outputs HSO1, HSO2 and HSO3 The reset time of the high-speed output contacts is longer than that of the conventional output contacts. High-speed power contacts are part of the card BIO0007 with eight binary inputs and three HSOs.
  • Page 67: Smv Function Blocks

    1MRS758407 C Basic functions X100 Figure 27: Internal fault signal output IRF 3.9.2.2 Signal outputs SO1 and SO2 in power supply module Signal outputs (normally open/form A or change-over/form C) SO1 (dual parallel form C) and SO2 (single contact/form A) are part of the power supply module of the merging unit.
  • Page 68: Iec 61850-9-2 Le Sampled Values Sending Smvsender

    Basic functions 1MRS758407 C 3.10.1 IEC 61850-9-2 LE sampled values sending SMVSENDER 3.10.1.1 Functionality The SMVSENDER function block is used for activating the SMV sending functionality. It adds/removes the sampled value control block and the related data set into/from the sending device's configuration. It has no input or output signals. Operation setting value “off”.
  • Page 69 1MRS758407 C Basic functions 3.10.2.4 Settings ILTCTR1 Non group settings (Basic) Table 42: ILTCTR1 Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Primary current 1.0...6000.0 100.0 Rated primary current Secondary current 2=1A 2=1A Rated secondary cur- rent 3=5A Amplitude Corr A 0.9000...1.1000...
  • Page 70: Restctr Function Block

    Basic functions 1MRS758407 C Parameter Values (Range) Unit Step Default Description Division ratio 1000...20000 10000 Voltage sensor division ra- Voltage input type 1=Voltage trafo 1=Voltage trafo Type of the voltage input 3=CVD sensor Angle Corr A -8.000 … 8.000 deg 0.0001 0.0000 Phase A Voltage phasor...
  • Page 71: Goose Function Blocks

    1MRS758407 C Basic functions 3.10.3.2 Settings RESTCTR1_ct Non group settings (Basic) Table 45: RESTCTR1_ct Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Primary current 1.0...6000.0 100.0 Primary current Secondary current 1=0.2A 2=1A Secondary current 2=1A 3=5A Amplitude Corr 0.9000...1.1000 0.0001 1.0000...
  • Page 72: Goosercv_Dp Function Block

    Basic functions 1MRS758407 C 3.11.1.1 Function block Figure 31: Function block 3.11.1.2 Functionality The GOOSERCV_BIN function is used to connect the GOOSE binary inputs to the application. 3.11.1.3 Signals GOOSERCV_BIN Output signals Table 47: GOOSERCV_BIN Output signals Name Type Description BOOLEAN Output signal VALID...
  • Page 73: Goosercv_Int8 Function Block

    1MRS758407 C Basic functions GOOSERCV_DP Output signals Table 48: GOOSERCV_DP Output signals Name Type Description Dbpos Output signal VALID BOOLEAN Output signal 3.11.3 GOOSERCV_INT8 function block 3.11.3.1 Function block Figure 33: Function block 3.11.3.2 Functionality The GOOSERCV_INT8 function is used to connect the GOOSE 8 bit integer inputs to the application.
  • Page 74: Goosercv_Enum Function Block

    Basic functions 1MRS758407 C 3.11.4.2 Functionality The GOOSERCV_INTL function is used to connect the GOOSE double binary input to the application and extracting single binary position signals from the double binary position signal. The OP output signal indicates that the position is open. Default value (0) is used if VALID output indicates invalid status.
  • Page 75: Goosercv_Int32 Function Block

    1MRS758407 C Basic functions GOOSERCV_ENUM Output signals Table 51: GOOSERCV_ENUM Output signals Name Type Description Enum Output signal VALID BOOLEAN Output signal 3.11.6 GOOSERCV_INT32 function block 3.11.6.1 Function block Figure 36: Function block 3.11.6.2 Functionality The GOOSERCV_INT32 function block is used to connect GOOSE 32 bit integer inputs to the application.
  • Page 76: Qty_Bad Function Block

    Basic functions 1MRS758407 C 3.12.1.1 Function block Figure 37: Function block 3.12.1.2 Functionality The QTY_GOOD function block evaluates the quality bits of the input signal and passes it as a Boolean signal for the application. The IN input can be connected to any logic application signal (logic function output, binary input, application function output or received GOOSE signal).
  • Page 77: Qty_Goose_Comm Function Block

    1MRS758407 C Basic functions 3.12.2.2 Functionality The QTY_BAD function block evaluates the quality bits of the input signal and passes it as a Boolean signal for the application. The IN input can be connected to any logic application signal (logic function output, binary input, application function output or received GOOSE signal).
  • Page 78: T_Health Function Block

    Basic functions 1MRS758407 C 3.12.3.3 Signals QTY_GOOSE_COMM Input signals Table 57: QTY_GOOSE_COMM Input signals Name Type Default Description Input signal QTY_GOOSE_COMM Output signals Table 58: QTY_GOOSE_COMM Output signals Name Type Description COMMVALID BOOLEAN Output signal 3.12.4 T_HEALTH function block 3.12.4.1 Function block Figure 40: Function block 3.12.4.2...
  • Page 79: T_F32_Int8 Function Block

    1MRS758407 C Basic functions T_HEALTH Output signals Table 60: T_HEALTH Output signals Name Type Description BOOLEAN Output signal WARNING BOOLEAN Output signal ALARM BOOLEAN Output signal 3.12.5 T_F32_INT8 function block 3.12.5.1 Function block Figure 41: Function block 3.12.5.2 Functionality The T_F32_INT8 function is used to convert 32-bit floating type values to 8-bit integer type.
  • Page 80: T_Tcmd Function Block

    Basic functions 1MRS758407 C 3.12.6.1 Function block Figure 42: Function block 3.12.6.2 Functionality The T_DIR function evaluates enumerated data of the FAULT_DIR data attribute of the directional functions. T_DIR can only be used with GOOSE. The DIR input can be connected to the GOOSERCV_ENUM function block, which is receiving the LD0.<function>.Str.dirGeneral or LD0.<function>.Dir.dirGeneral data attribute sent by another device.
  • Page 81: T_Tcmd_Bin Function Block

    1MRS758407 C Basic functions 3.12.7.2 Functionality The T_TCMD function is used to convert enumerated input signal to Boolean output signals. Table 65: Conversion from enumerated to Boolean RAISE LOWER FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE 3.12.7.3 Signals T_TCMD input signals Table 66: T_TCMD input signals Name Type...
  • Page 82: T_Bin_Tcmd Function Block

    Basic functions 1MRS758407 C Table 68: Conversion from integer to Boolean RAISE LOWER FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE 3.12.8.3 Signals T_TCMD_BIN input signals Table 69: T_TCMD_BIN input signals Name Type Default Description INT32 Input signal T_TCMD_BIN output signals Table 70: T_TCMD_BIN output signals Name Type...
  • Page 83: Configurable Logic Blocks

    1MRS758407 C Basic functions 3.12.9.3 Signals T_BIN_TCMD input signals Table 72: T_BIN_TCMD input signals Name Type Default Description RAISE BOOLEAN Raise command LOWER BOOLEAN Lower command T_BIN_TCMD output signals Table 73: T_BIN_TCMD output signals Name Type Description INT32 Output signal 3.13 Configurable logic blocks 3.13.1...
  • Page 84 Basic functions 1MRS758407 C Function block Figure 46: Function blocks Functionality OR, OR6 and OR20 are used to form general combinatory expressions with Boolean variables. The O output is activated when at least one input has the value TRUE. The default value of all inputs is FALSE, which makes it possible to use only the required number of inputs and leave the rest disconnected.
  • Page 85 1MRS758407 C Basic functions Name Type Default Description BOOLEAN Input signal 3 BOOLEAN Input signal 4 BOOLEAN Input signal 5 BOOLEAN Input signal 6 OR20 Input signals Table 76: OR20 Input signals Name Type Default Description BOOLEAN Input signal 1 BOOLEAN Input signal 2 BOOLEAN...
  • Page 86 Basic functions 1MRS758407 C OR20 Output signal Table 79: OR20 Output signal Name Type Description BOOLEAN Output signal Settings The function does not have any parameters available in PCM600. 3.13.1.2 AND Function block AND Function block Figure 47: Function blocks Functionality AND, AND6 and AND20 are used to form general combinatory expressions with Boolean variables.
  • Page 87 1MRS758407 C Basic functions AND Input signals Table 80: AND Input signals Name Type Default Description BOOLEAN Input signal 1 BOOLEAN Input signal 2 AND6 Input signals Table 81: AND6 Input signals Name Type Default Description BOOLEAN Input signal 1 BOOLEAN Input signal 2 BOOLEAN...
  • Page 88 Basic functions 1MRS758407 C AND Output signal Table 83: AND Output signal Name Type Description BOOLEAN Output signal AND6 Output signal Table 84: AND6 Output signal Name Type Description BOOLEAN Output signal AND20 Output signal Table 85: AND20 Output signal Name Type Description...
  • Page 89 1MRS758407 C Basic functions XOR Input signals Table 86: XOR Input signals Name Type Default Description BOOLEAN Input signal 1 BOOLEAN Input signal 2 XOR Output signal Table 87: XOR Output signal Name Type Description BOOLEAN Output signal Settings The function does not have any parameters available in PCM600. 3.13.1.4 NOT function block Function block...
  • Page 90 Basic functions 1MRS758407 C Settings The function does not have any parameters available in PCM600. 3.13.1.5 MAX3 function block Function block Figure 50: Function block Functionality The maximum function MAX3 selects the maximum value from three analog values. Disconnected inputs and inputs whose quality is bad are ignored. If all inputs are disconnected or the quality is bad, MAX3 output value is set to -2^21.
  • Page 91 1MRS758407 C Basic functions Function block Figure 51: Function block Functionality The minimum function MIN3 selects the minimum value from three analog values. Disconnected inputs and inputs whose quality is bad are ignored. If all inputs are disconnected or the quality is bad, MIN3 output value is set to 2^21. Signals MIN3 Input signals Table 92: MIN3 Input signals...
  • Page 92 Basic functions 1MRS758407 C R_TRIG detects the transition from FALSE to TRUE at the CLK input. When the rising edge is detected, the element assigns the output to TRUE. At the next execution round, the output is returned to FALSE despite the state of the input. Signals R_TRIG Input signals Table 94: R_TRIG Input signals...
  • Page 93 1MRS758407 C Basic functions F_TRIG Output signal Table 97: F_TRIG Output signal Name Type Description BOOLEAN Output signal Settings The function does not have any parameters available in PCM600. 3.13.1.9 T_POS_XX function blocks Function block Figure 54: Function blocks Functionality The circuit breaker position information can be communicated with the IEC 61850 GOOSE messages.
  • Page 94 Basic functions 1MRS758407 C T_POS_OP Input signals Table 100: T_POS_OP Input signals Name Type Default Description Double binary Input signal T_POS_OK Input signals Table 101: T_POS_OK Input signals Name Type Default Description Double binary Input signal T_POS_CL Output signal Table 102: T_POS_CL Output signal Name Type Description...
  • Page 95 1MRS758407 C Basic functions Functionality SWITCHR switching block for REAL data type is operated by the CTL_SW input, selects the output value OUT between the IN1 and IN2 inputs. CTL_SW FALSE TRUE Signals SWITCHR Input signals Table 105: SWITCHR Input signals Name Type Default...
  • Page 96 Basic functions 1MRS758407 C Signals SWITCHI32 input signals Table 108: SWITCHI32 input signals Name Type Default Description CTL_SW BOOLEAN Control Switch INT32 Input signal 1 INT32 Input signal 2 SWITCHI32 output signals Table 109: SWITCHI32 output signals Name Type Description INT32 Output signal 3.13.1.12...
  • Page 97 1MRS758407 C Basic functions SR Input signals Table 111: SR Input signals Name Type Default Description BOOLEAN 0=False Set Q output when BOOLEAN 0=False Resets Q output when set SR Output signals Table 112: SR Output signals Name Type Description BOOLEAN Q status NOTQ...
  • Page 98: Minimum Pulse Timer

    Basic functions 1MRS758407 C RS Input signals Table 114: RS Input signals Name Type Default Description BOOLEAN 0=False Set Q output when BOOLEAN 0=False Resets Q output when set RS Output signals Table 115: RS Output signals Name Type Description BOOLEAN Q status NOTQ...
  • Page 99 1MRS758407 C Basic functions Figure 60: A = Trip pulse is shorter than Pulse time setting, B = Trip pulse is longer than Pulse time setting Signals TPGAPC Output signals Table 117: TPGAPC Output signals Name Type Description OUT1 BOOLEAN Output 1 status OUT2 BOOLEAN...
  • Page 100 Basic functions 1MRS758407 C Functionality The Minimum second pulse timer function TPSGAPC contains two independent timers. The function has a settable pulse length (in seconds). The timers are used for setting the minimum pulse length for example, the signal outputs. Once the Pulse time input is activated, the output is set for a specific duration using the setting.
  • Page 101 1MRS758407 C Basic functions Technical revision history Table 123: TPSGAPC Technical revision history Technical revision Change Outputs now visible in menu Internal improvement 3.13.2.3 Minimum pulse timer TPMGAPC Function block Figure 63: Function block Functionality The Minimum minute pulse timer function TPMGAPC contains two independent timers.
  • Page 102: Pulse Timer Ptgapc

    Basic functions 1MRS758407 C TPMGAPC Output signals Table 125: TPMGAPC Output signals Name Type Description OUT1 BOOLEAN Output 1 status OUT2 BOOLEAN Output 2 status Settings TPMGAPC Non group settings (Basic) Table 126: TPMGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default...
  • Page 103 1MRS758407 C Basic functions 3.13.3.3 Signals PTGAPC Input signals Table 127: PTGAPC Input signals Name Type Default Description BOOLEAN 0=False Input 1 status BOOLEAN 0=False Input 2 status BOOLEAN 0=False Input 3 status BOOLEAN 0=False Input 4 status BOOLEAN 0=False Input 5 status BOOLEAN 0=False...
  • Page 104: Time Delay Off (8 Pcs) Tofgapc

    Basic functions 1MRS758407 C 3.13.3.5 Technical data Table 130: PTGAPC Technical data Characteristic Value Operate time accuracy ±1.0% of the set value or ±20 ms 3.13.4 Time delay off (8 pcs) TOFGAPC 3.13.4.1 Function block Figure 67: Function block 3.13.4.2 Functionality The time delay off (8 pcs) function TOFGAPC can be used, for example, for a dropoff-delayed output related to the input signal.
  • Page 105 1MRS758407 C Basic functions 3.13.4.3 Signals Table 131: TOFGAPC Input signals Name Type Default Description BOOLEAN 0=False Input 1 status BOOLEAN 0=False Input 2 status BOOLEAN 0=False Input 3 status BOOLEAN 0=False Input 4 status BOOLEAN 0=False Input 5 status BOOLEAN 0=False Input 6 status...
  • Page 106: Time Delay On (8 Pcs) Tongapc

    Basic functions 1MRS758407 C 3.13.5 Time delay on (8 pcs) TONGAPC 3.13.5.1 Function block Figure 69: Function block 3.13.5.2 Functionality The time delay on (8 pcs) function TONGAPC can be used, for example, for time delaying the output related to the input signal. TONGAPC contains eight independent timers.
  • Page 107: Set-Reset (8 Pcs) Srgapc

    1MRS758407 C Basic functions Table 136: TONGAPC Output signals Name Type Description BOOLEAN Output 1 BOOLEAN Output 2 BOOLEAN Output 3 BOOLEAN Output 4 BOOLEAN Output 5 BOOLEAN Output 6 BOOLEAN Output 7 BOOLEAN Output 8 3.13.5.4 Settings Table 137: TONGAPC Non group settings (Basic) Parameter Values (Range) Unit...
  • Page 108 Basic functions 1MRS758407 C 3.13.6.1 Function block Figure 71: Function block 3.13.6.2 Functionality The set-reset (8 pcs) function SRGAPC is a simple SR flip-flop with a memory that can be set or that can reset an output from the S# or R# inputs, respectively. The function contains eight independent set-reset flip-flop latches where the SET input has the higher priority over the RESET input.
  • Page 109 1MRS758407 C Basic functions Name Type Default Description BOOLEAN 0=False Set Q2 output when BOOLEAN 0=False Resets Q2 output when set BOOLEAN 0=False Set Q3 output when BOOLEAN 0=False Resets Q3 output when set BOOLEAN 0=False Set Q4 output when BOOLEAN 0=False Resets Q4 output...
  • Page 110: Move (8 Pcs) Mvgapc

    Basic functions 1MRS758407 C Table 142: SRGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Reset Q1 0=Cancel Resets Q1 output 0=Cancel when set 1=Reset Reset Q2 0=Cancel Resets Q2 output 0=Cancel when set 1=Reset Reset Q3 0=Cancel Resets Q3 output 0=Cancel...
  • Page 111 1MRS758407 C Basic functions 3.13.7.3 Signals Table 143: MVGAPC Output signals Name Type Description BOOLEAN Q1 status BOOLEAN Q2 status BOOLEAN Q3 status BOOLEAN Q4 status BOOLEAN Q5 status BOOLEAN Q6 status BOOLEAN Q7 status BOOLEAN Q8 status 3.13.7.4 Settings Table 144: MVGAPC Non group settings (Basic) Parameter Values (Range)
  • Page 112: Local/Remote Control Function Block Control

    Basic functions 1MRS758407 C 3.13.8 Local/remote control function block CONTROL 3.13.8.1 Function block Figure 73: Function block 3.13.8.2 Functionality Local/Remote control supports multilevel access for control operations in substations according to the IEC 61850 standard. Multilevel control access with separate station control access level is not supported by other protocols than IEC 61850.
  • Page 113 1MRS758407 C Basic functions and “L, S, S+R, L+S, L+S+R”. Multilevel access status is available from IEC 61850 data object CTRL.LLN0.MltLev. Control access selection is made with CONTROL function block and IEC 61850 data object CTRL.LLN0.LocSta. When writing CTRL.LLN0.LocSta IEC 61850 data object, IEC 61850 command originator category station must be used by the client, and remote IEC 61850 control access must be allowed by the merging unit station authority.
  • Page 114 Basic functions 1MRS758407 C 3.13.8.5 Station authority level "L,R,L+R" Station authority level "L,R, L+R" adds multilevel access support. Control access can also be simultaneously permitted from local or remote location. Simultaneous local or remote control operation is not allowed as one client and location at time can access controllable objects and they remain reserved until the previously started control operation is first completed by the client.
  • Page 115 1MRS758407 C Basic functions LOCAL REMOTE STATION IEC 61850 IEC 61850 IEC 61850 IEC 61850 remote remote remote remote IEC 61850 IEC 61850 IEC 61850 IEC 61850 station station station station Figure 76: Station authority is "L,S,R" When the station authority level “L,S,R” is used, the control access can be selected using the CONTROL function block.
  • Page 116 Basic functions 1MRS758407 C LOCAL STATION L+S+R IEC 61850 IEC 61850 IEC 61850 IEC 61850 IEC 61850 IEC 61850 remote remote remote remote remote remote IEC 61850 IEC 61850 IEC 61850 IEC 61850 IEC 61850 IEC 61850 station station station station station station...
  • Page 117 1MRS758407 C Basic functions Name Type Default Description CTRL_STA BOOLEAN Control input Station CTRL_REM BOOLEAN Control input Remote CTRL_ALL BOOLEAN Control input All CONTROL output signals Table 151: CONTROL output signals Name Type Description BOOLEAN Control output OFF LOCAL BOOLEAN Control output Local STATION BOOLEAN...
  • Page 118: Generic Control Point (16 Pcs) Spcgapc

    Basic functions 1MRS758407 C Name Type Values (Range) Unit Description 6=Direct close 7=Cancel 8=Position reached 9=Position timeout 10=Object status only 11=Object direct 12=Object select 13=RL local allowed 14=RL remote allowed 15=RL off 16=Function off 17=Function blocked 18=Command progress 19=Select timeout 20=Missing authority 21=Close not enabled 22=Open not enabled...
  • Page 119 1MRS758407 C Basic functions 3.13.9.1 Function block Figure 78: Function block 3.13.9.2 Functionality The generic control points function SPCGAPC contains 16 independent control points. SPCGAPC offers the capability to activate its outputs through a local or remote control. The local control request can be issued through the buttons in the single-line diagram or via inputs and the remote control request through communication.
  • Page 120 Basic functions 1MRS758407 C mode is "Toggle", the output state freezes and cannot be changed while the BLOCK Operation mode is "Pulsed", the activation of the BLOCK input input is active. If resets the outputs to the "False" state and further control requests are ignored while the BLOCK input is active.
  • Page 121 1MRS758407 C Basic functions Name Type Default Description IN15 BOOLEAN 0=False Input of control point IN16 BOOLEAN 0=False Input of control point SPCGAPC Output signals Table 155: SPCGAPC Output signals Name Type Description BOOLEAN Output 1 status BOOLEAN Output 2 status BOOLEAN Output 3 status BOOLEAN...
  • Page 122 Basic functions 1MRS758407 C 3.13.9.4 Settings SPCGAPC Non group settings (Basic) Table 156: SPCGAPC Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Loc Rem restriction 0=False 1=True Local remote switch restriction 1=True Operation mode -1=Off Operation mode 0=Pulsed for generic control 1=Toggle/Persis-...
  • Page 123 1MRS758407 C Basic functions Parameter Values (Range) Unit Step Default Description 1=Toggle/Persis- tent -1=Off Pulse length 10...3600000 1000 Pulse length for pulsed operation mode Description SPCGAPC1 Output Generic control point description Operation mode -1=Off Operation mode 0=Pulsed for generic control 1=Toggle/Persis- point tent...
  • Page 124: Factory Settings Restoration

    Basic functions 1MRS758407 C Parameter Values (Range) Unit Step Default Description Pulse length 10...3600000 1000 Pulse length for pulsed operation mode Description SPCGAPC1 Output Generic control point description Operation mode -1=Off Operation mode 0=Pulsed for generic control 1=Toggle/Persis- point tent -1=Off Pulse length 10...3600000...
  • Page 125: Ethernet Channel Supervision Function Blocks

    1MRS758407 C Basic functions 3.15 ETHERNET channel supervision function blocks 3.15.1 Redundant Ethernet channel supervision RCHLCCH 3.15.1.1 Function block Figure 80: Function block 3.15.1.2 Functionality Redundant Ethernet channel supervision RCHLCCH represents LAN A and LAN B redundant Ethernet channels. 3.15.1.3 Signals RCHLCCH output signals Table 157: RCHLCCH output signals...
  • Page 126: Ethernet Channel Supervision Schlcch

    Basic functions 1MRS758407 C Redundancy settings Table 158: Redundancy settings Parameter Values Unit Step Defaul Description (Range) Redundant None Mode selection for Ethernet switch None mode on redundant communication mod- ules. The "None" mode is used with normal and Self-healing Ethernet topologies.
  • Page 127 1MRS758407 C Basic functions Output signals Table 159: SCHLCCH1 output signals Parameter Values Unit Step Defaul Description (Range) CH1LIV Status of Ethernet channel X1/LAN. True Value is "True" if the port is receiv- False ing Ethernet frames. Valid only when Redundant mode is set to "None"...
  • Page 128 Basic functions 1MRS758407 C Parameter Values (Range) Unit Step Default Description when port is used for line differential communica- tion. Port 2 Mode Mode selection for rear port(s). If port is not used, it can be set to “Off”. Port cannot be set to “Off” Redundant mode is “HSR”...
  • Page 129: Protection Related Functions

    1MRS758407 C Protection related functions Protection related functions Master trip TRPPTRC 4.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Master trip TRPPTRC Master Trip 94/86 4.1.2 Function block Figure 82: Function block 4.1.3 Functionality The master trip function TRPPTRC is used as a trip command collector and handler after the protection functions.
  • Page 130 Protection related functions 1MRS758407 C Figure 83: Functional module diagram Timer The duration of the TRIP output signal from TRPPTRC can be adjusted with the Trip pulse time setting when the "Non-latched" operation mode is used. The pulse length should be long enough to secure the opening of the breaker. For three-pole tripping, TRPPTRC has a single input OPERATE, through which all trip output signals are routed from the protection functions within the merging unit, or from external protection functions via one or more of the merging unit's binary inputs.
  • Page 131: Application

    1MRS758407 C Protection related functions 4.1.5 Application All trip signals from GOOSE signals are routed through the trip logic. The most simplified application of the logic function is linking the trip signal and ensuring that the signal is long enough. The tripping logic in the merging unit is intended to be used in the three-phase tripping for all fault types (3ph operating).
  • Page 132: Settings

    Protection related functions 1MRS758407 C 4.1.6.2 TRPPTRC Output signals Table 165: TRPPTRC Output signals Name Type Description TRIP BOOLEAN General trip output signal CL_LKOUT BOOLEAN Circuit breaker lockout out- put (set until reset) 4.1.7 Settings 4.1.7.1 TRPPTRC Non group settings (Basic) Table 166: TRPPTRC Non group settings (Basic) Parameter Values (Range)
  • Page 133: Technical Revision History

    1MRS758407 C Protection related functions 4.1.9 Technical revision history Table 168: TRPPTRC Technical revision history Technical revision Change Internal improvement. Trip output mode default setting is Setting changed to "Latched". Internal improvement. SMU615 Technical Manual...
  • Page 134: Supervision Functions

    Supervision functions 1MRS758407 C Supervision functions Trip circuit supervision TCSSCBR 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Trip circuit supervision TCSSCBR 5.1.2 Function block Figure 85: Function block 5.1.3 Functionality The trip circuit supervision function TCSSCBR is designed to supervise the control circuit of the circuit breaker.
  • Page 135: Application

    1MRS758407 C Supervision functions Figure 86: Functional module diagram TCS status This module receives the trip circuit status from the hardware. A detected failure in the trip circuit activates the timer. Timer Once activated, the timer runs until the set value of Operate delay time has elapsed.
  • Page 136 Supervision functions 1MRS758407 C Figure 87: Operating principle of the trip-circuit supervision with an external resistor. The TCSSCBR blocking switch is not required since the external resistor is used. If TCS is required only in a closed position, the external shunt resistance can be omitted.
  • Page 137 1MRS758407 C Supervision functions Figure 88: Operating principle of the trip-circuit supervision without an external resistor. The circuit breaker open indication is set to block TCSSCBR when the circuit breaker is open. Trip circuit supervision and other trip contacts It is typical that the trip circuit contains more than one trip contact in parallel, for example in transformer feeders where the trip of a Buchholz relay is connected in parallel with the feeder terminal and other relays involved.
  • Page 138 Supervision functions 1MRS758407 C Figure 89: Constant test current flow in parallel trip contacts and trip circuit supervision In case of parallel trip contacts, the recommended way to do the wiring is that the TCS test current flows through all wires and joints. SMU615 Technical Manual...
  • Page 139 1MRS758407 C Supervision functions Figure 90: Improved connection for parallel trip contacts where the test current flows through all wires and joints Several trip circuit supervision functions parallel in circuit Not only the trip circuit often have parallel trip contacts, it is also possible that the circuit has multiple TCS circuits in parallel.
  • Page 140 Supervision functions 1MRS758407 C An auxiliary relay can be used between the merging unit trip contact and the circuit breaker coil. This way the breaking capacity question is solved, but the TCS circuit in the merging unit monitors the healthy auxiliary relay coil, not the circuit breaker coil. The separate trip circuit supervision relay is applicable for this to supervise the trip coil of the circuit breaker.
  • Page 141 1MRS758407 C Supervision functions Using power output contacts without trip circuit supervision If TCS is not used but the contact information of corresponding power outputs are required, the internal resistor can be by-passed. The output can then be utilized as a normal power output.
  • Page 142 Supervision functions 1MRS758407 C Figure 92: Incorrect connection of trip-circuit supervision A connection of three merging units with a double pole trip circuit is shown in the following figure. Only the merging unit R3 has an internal TCS circuit. In order to test the operation of the merging unit R2, but not to trip the circuit breaker, the upper trip contact of the merging unit R2 is disconnected, as shown in the figure, while the lower contact is still connected.
  • Page 143: Signals

    1MRS758407 C Supervision functions Figure 93: Incorrect testing of merging units 5.1.6 Signals 5.1.6.1 TCSSCBR Input signals Table 170: TCSSCBR Input signals Name Type Default Description BLOCK BOOLEAN 0=False Block input status 5.1.6.2 TCSSCBR Output signals Table 171: TCSSCBR Output signals Name Type Description...
  • Page 144: Settings

    Supervision functions 1MRS758407 C 5.1.7 Settings 5.1.7.1 TCSSCBR Non group settings Table 172: TCSSCBR Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 5=off Operation Off / On 1=on 5=off Operate delay time 20...300000 3000 Operate delay time Table 173: TCSSCBR Non group settings (Advanced) Parameter Values (Range)
  • Page 145: Identification

    1MRS758407 C Supervision functions 5.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current circuit super- CCSPVC MCS 3I MCS 3I vision 5.2.2 Function block Figure 94: Function block 5.2.3 Functionality The current circuit supervision function CCSPVC is used for monitoring current transformer secondary circuits.
  • Page 146 Supervision functions 1MRS758407 C Differential current monitoring Differential current monitoring supervises the difference between the summed phase currents I_A, I_B and I_C and the reference current I_REF. Start value setting. The current operating characteristics can be selected with the When the highest phase current is less than 1.0 × In, the differential current limit is Start value .
  • Page 147: Application

    1MRS758407 C Supervision functions Start value setting is given in units of ×In of the phase current transformer. The possible difference in the phase and reference current transformer ratios is Primary internally compensated by scaling I_REF with the value derived from the current setting values.
  • Page 148 Supervision functions 1MRS758407 C Figure 97: Connection diagram for reference current measurement with core- balanced current transformer Current measurement with two independent three-phase sets of CT cores Figure 98 Figure 99 show diagrams of connections where the reference current is measured with two independent three-phase sets of CT cores. SMU615 Technical Manual...
  • Page 149 1MRS758407 C Supervision functions Figure 98: Connection diagram for current circuit supervision with two sets of three-phase current transformer protection cores When using the measurement core for reference current measurement, it should be noted that the saturation level of the measurement core is much lower than with the protection core.
  • Page 150 Supervision functions 1MRS758407 C Figure 99: Connection diagram for current circuit supervision with two sets of three-phase current transformer cores (protection and measurement) Example of incorrect connection The currents must be measured with two independent cores, that is, the phase currents must be measured with a different core than the reference current.
  • Page 151: Signals

    1MRS758407 C Supervision functions Figure 100: Example of incorrect reference current connection 5.2.6 Signals 5.2.6.1 CCSPVC Input signals Table 176: CCSPVC Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current I_REF SIGNAL Reference current BLOCK...
  • Page 152: Settings

    Supervision functions 1MRS758407 C 5.2.6.2 CCSPVC Output signals Table 177: CCSPVC Output signals Name Type Description FAIL BOOLEAN Fail output ALARM BOOLEAN Alarm output 5.2.7 Settings 5.2.7.1 CCSPVC Non group settings Table 178: CCSPVC Non group settings (Basic) Parameter Values (Range) Unit Step Default...
  • Page 153: Technical Data

    1MRS758407 C Supervision functions 5.2.9 Technical data Table 181: CCSPVC Technical data Characteristic Value Operate time <30 ms 5.2.10 Technical revision history Table 182: CCSPVC Technical revision history Technical revision Change Internal improvement Internal improvement Internal improvement Fuse failure supervision SEQSPVC 5.3.1 Identification Function description...
  • Page 154: Functionality

    Supervision functions 1MRS758407 C 5.3.3 Functionality The fuse failure supervision function SEQSPVC is used to block the voltage- measuring functions when failure occurs in the secondary circuits between the voltage transformer (or combi sensor or voltage sensor) and merging unit to avoid faulty operation of the voltage protection functions.
  • Page 155 1MRS758407 C Supervision functions The module makes a phase-specific comparison between each voltage input and Seal in voltage setting. If the input voltage is lower than the setting, the corresponding phase is reported to the decision logic module. Current and voltage delta criterion Change rate enable parameter The delta function can be activated by setting the to "True".
  • Page 156 Supervision functions 1MRS758407 C The fuse failure detection outputs FUSEF_U and FUSEF_3PH are controlled according to the detection criteria or external signals. Table 183: Fuse failure output control Fuse failure detection criterion Conditions and function response Negative-sequence criterion If a fuse failure is detected based on the negative se- quence criterion, the output is activated.
  • Page 157: Application

    1MRS758407 C Supervision functions The activation of the BLOCK input deactivates both FUSEF_U and FUSEF_3PH outputs. 5.3.5 Application Some protection functions operate on the basis of the measured voltage value in the merging unit point. These functions can fail if there is a fault in the measuring circuits between the voltage transformer (or combi sensor or voltage sensor) and merging unit.
  • Page 158: Signals

    Supervision functions 1MRS758407 C 5.3.6 Signals 5.3.6.1 SEQRFUF Input signals Table 184: SEQRFUF Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current SIGNAL Negative sequence current U_A_AB SIGNAL Phase A voltage U_B_BC SIGNAL Phase B voltage...
  • Page 159: Monitored Data

    1MRS758407 C Supervision functions Table 187: SEQRFUF Non group settings (Advanced) Parameter Values (Range) Unit Step Default Description Neg Seq current 0.03...0.20 0.01 0.03 Operate level of neg seq undercur- rent element Neg Seq voltage 0.03...0.20 0.01 0.10 Operate level of neg seq overvolt- age element Current change...
  • Page 160: Technical Revision History

    Supervision functions 1MRS758407 C Table 189: SEQSPVC Technical data Characteristic Value Operate time NPS function Neg Seq volt- = 1.1 × set <33 ms Fault age Lev = 5.0 × set Neg Seq volt- <18 ms Fault age Lev Delta function Voltage change ΔU = 1.1 ×...
  • Page 161: Arc Detection Arcdsarc

    1MRS758407 C Supervision functions Arc detection ARCDSARC 5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Arc detection ARCDSARC ARCD 5.4.2 Function block Figure 104: Function block 5.4.3 Functionality The arc function ARCDSARC is used for detection of arc situations in air insulated metal-clad switchgears caused by, for example, human errors during maintenance or insulation breakdown during operation.
  • Page 162: Application

    Supervision functions 1MRS758407 C is deactivated or at least during the drop-off time of 25 ms. The BLOCK signal can be used to block the arc detection output ARC_FLT_DET. 5.4.5 Application The arc detection information from this function can be used in the standalone devices, for an alarm or protection logic.
  • Page 163: Settings

    1MRS758407 C Supervision functions 5.4.6.2 ARCDSARC Output signals Table 192: ARCDSARC Output signals Name Type Description ARC_FLT_DET BOOLEAN Fault arc detected=light signal output 5.4.7 Settings 5.4.7.1 ARCDSARC Non group settings Table 193: ARCDSARC Non group settings (Basic) Parameter Values (Range) Unit Step Default...
  • Page 164: Technical Data

    Supervision functions 1MRS758407 C 5.4.9 Technical data Table 195: ARCDSARC Technical data Characteristic Value Operate time Minimum Typical Maximum 9 ms 10 ms 12 ms 4 ms 6 ms 7 ms Includes the delay of the heavy-duty output contact Normal power output High-speed power output SMU615 Technical Manual...
  • Page 165: Condition Monitoring Functions

    1MRS758407 C Condition monitoring functions Condition monitoring functions Circuit breaker condition monitoring SSCBR 6.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Circuit-breaker condition moni- SSCBR CBCM CBCM toring 6.1.2 Function block Figure 106: Function block 6.1.3 Functionality The circuit-breaker condition monitoring function SSCBR is used to monitor...
  • Page 166 Condition monitoring functions 1MRS758407 C 6.1.4 Operation principle The circuit breaker condition monitoring function includes different metering and monitoring sub-functions. The functions can be enabled and disabled with the Operation setting. The corresponding parameter values are “On” and “Off”. The Operation is set to “Off”.
  • Page 167 1MRS758407 C Condition monitoring functions Figure 108: Functional module diagram for monitoring circuit breaker status Phase current check Acc stop current . If This module compares the three phase currents to the setting the current in a phase exceeds the set level, information about the phase is reported to the contact position indicator module.
  • Page 168 Condition monitoring functions 1MRS758407 C Alarm limit check Inactive Alm days When the inactive days exceed the limit value defined with the setting, the MON_ALM alarm is initiated. The time in hours at which this alarm is Inactive Alm hours parameter as coordinates of UTC. activated can be set with the The alarm signal MON_ALM can be blocked by activating the binary input BLOCK.
  • Page 169 1MRS758407 C Condition monitoring functions between the time when the POSOPEN auxiliary contact opens and the main contact is completely open. To incorporate the time t , a correction factor needs to be added with t to get the actual opening time. This factor is added with the open Opening time Cor (= t ) setting.
  • Page 170 Condition monitoring functions 1MRS758407 C 6.1.4.4 Operation counter The operation counter subfunction calculates the number of breaker operation cycles. The opening and closing operations are both included in one operation cycle. The operation counter value is updated after each opening operation. The operation of the subfunction can be described with a module diagram.
  • Page 171 1MRS758407 C Condition monitoring functions Figure 114: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s]. The factor y is set with Current exponent setting. The calculation is initiated with the POSCLOSE input opening events. It ends when Acc stop current setting value.
  • Page 172 Condition monitoring functions 1MRS758407 C The IPOW_ALM and IPOW_LO outputs can be blocked by activating the binary input BLOCK. 6.1.4.6 Remaining life of circuit breaker Every time the breaker operates, the life of the circuit breaker reduces due to wearing. The wearing in the breaker depends on the tripping current, and the remaining life of the breaker is estimated from the circuit breaker trip curve provided by the manufacturer.
  • Page 173 1MRS758407 C Condition monitoring functions 6.1.4.7 Circuit breaker spring-charged indication The circuit breaker spring-charged indication subfunction calculates the spring charging time. The operation of the subfunction can be described with a module diagram. All the modules in the diagram are explained in the next sections. Figure 117: Functional module diagram for circuit breaker spring-charged indication and alarm Spring charge time measurement...
  • Page 174: Application

    Condition monitoring functions 1MRS758407 C Timer 1 When the PRES_ALM_IN binary input is activated, the PRES_ALM alarm is activated Pressure alarm time setting. The PRES_ALM alarm can after a time delay set with the be blocked by activating the BLOCK input. Timer 2 If the pressure drops further to a very low level, the PRES_LO_IN binary input becomes high, activating the lockout alarm PRES_LO after a time delay set with...
  • Page 175 1MRS758407 C Condition monitoring functions Accumulation of I y t Accumulation of I t calculates the accumulated energy ΣI t, where the factor y is known as the current exponent. The factor y depends on the type of the circuit breaker.
  • Page 176: Signals

    Condition monitoring functions 1MRS758407 C Rated operating current = 630 A Rated fault current = 16 kA Op number rated = 30000 Op number fault = 20 Calculation for estimating the remaining life Figure 119 shows that there are 30,000 possible operations at the rated operating current of 630 A and 20 operations at the rated fault current 16 kA.
  • Page 177 1MRS758407 C Condition monitoring functions Name Type Default Description POSCLOSE BOOLEAN 0=False Signal for close po- sition of apparatus from I/O OPEN_CB_EXE BOOLEAN 0=False Signal for open com- mand to coil CLOSE_CB_EXE BOOLEAN 0=False Signal for close com- mand to coil PRES_ALM_IN BOOLEAN 0=False...
  • Page 178: Settings

    Condition monitoring functions 1MRS758407 C Name Type Description IPOW_LO BOOLEAN Accumulated currents power (Iyt),exceeded lockout limit CB_LIFE_ALM BOOLEAN Remaining life of CB excee- ded alarm limit MON_ALM BOOLEAN CB 'not operated for long time' alarm PRES_ALM BOOLEAN Pressure below alarm level PRES_LO BOOLEAN Pressure below lockout level...
  • Page 179: Monitored Data

    1MRS758407 C Condition monitoring functions Parameter Values (Range) Unit Step Default Description Directional Coef -3.00...-0.50 0.01 -1.50 Directional coeffi- cient for CB life cal- culation Initial CB Rmn life 0...99999 5000 Initial value for the CB remaining life Rated Op current 100.00...5000.00 0.01 1000.00...
  • Page 180 Condition monitoring functions 1MRS758407 C 6.1.8.1 SSCBR Monitored data Table 200: SSCBR Monitored data Name Type Values (Range) Unit Description T_TRV_OP FLOAT32 0...60000 Travel time of the CB during opening opera- tion T_TRV_CL FLOAT32 0...60000 Travel time of the CB dur- ing closing oper- ation T_SPR_CHR...
  • Page 181: Technical Data

    1MRS758407 C Condition monitoring functions 6.1.9 Technical data Table 201: SSCBR Technical data Characteristic Value Current measuring accuracy ±1.5 % or ±0.002 × I (at currents in the range of 0.1…10 × I ±5.0 % (at currents in the range of 10…40 × I Operate time accuracy ±1.0 % of the set value or ±20 ms Travelling time measurement...
  • Page 182: Measurement Functions

    Measurement functions 1MRS758407 C Measurement functions Basic measurements 7.1.1 Functions The three-phase current measurement function CMMXU is used for monitoring and metering the phase currents of the power system. The three-phase voltage measurement function VMMXU is used for monitoring and metering the phase-to-phase voltages of the power system.
  • Page 183 1MRS758407 C Measurement functions Demand value calculation The demand values are calculated separately for each measurement function and per phase when applicable. The available measurement modes are "Linear" and "Logarithmic". The "Logarithmic" measurement mode is only effective for phase current and residual current demand value calculations. The demand value calculation mode is selected with the setting parameter Configuration >...
  • Page 184 Measurement functions 1MRS758407 C Zero-point clamping A measured value under the zero-point clamping limit is forced to zero. This allows the noise in the input signal to be ignored. The active clamping function forces both the actual measurement value and the angle value of the measured signal to zero.
  • Page 185 1MRS758407 C Measurement functions Figure 120: Presentation of operating limits The range information can also be decoded into boolean output signals on some of the measuring functions and the number of phases required to exceed or undershoot the limit before activating the outputs and can be set with the of phases setting in the three-phase measurement functions CMMXU and VMMXU.
  • Page 186 Measurement functions 1MRS758407 C Function Settings for limit value supervision F high limit Frequency measurement (FMMXU) High limit F low limit Low limit F high high limit High-high limit F low low limit Low-low limit Ps Seq A high limit, Ng Seq Low limit A high limit, Zro A high limit High-high limit...
  • Page 187 1MRS758407 C Measurement functions Figure 121: Integral deadband supervision The deadband value used in the integral calculation is configured with the deadband setting. The value represents the percentage of the difference between the maximum and minimum limit in the units of 0.001 percent x seconds. The reporting delay of the integral algorithms in seconds is calculated with the formula: deadband...
  • Page 188 Measurement functions 1MRS758407 C Function Settings Maximum/ minimum (=range) F deadband 75/35 (=40 Hz) Frequency measurement (FMMXU) Ps Seq A deadband, Ng Seq A 40/0 (=40xIn) Phase sequence current measurement deadband, Zro A deadband (CSMSQI) Ps Seq V deadband, Ng Seq V 4/0 (=4xUn) Phase sequence voltage measure- deadband, Zro V deadband...
  • Page 189 1MRS758407 C Measurement functions Figure 122: Complex power and power quadrants Table 206: Power quadrants Quadrant Current Power Lagging 0…+1.00 +ind Lagging 0…-1.00 -cap Leading 0…-1.00 -ind Leading 0…+1.00 +cap The active power P direction can be selected between forward and reverse Active power Dir and correspondingly the reactive power Q direction can with Reactive power Dir .
  • Page 190: Measurement Function Applications

    Measurement functions 1MRS758407 C 7.1.3 Measurement function applications The measurement functions are used for power system measurement, supervision and reporting to a monitoring tool within PCM600, or to the station level, for example, with IEC 61850. The possibility to continuously monitor the measured values of active power, reactive power, currents, voltages, power factors and so on, is vital for efficient production, transmission, and distribution of electrical energy.
  • Page 191 1MRS758407 C Measurement functions 7.1.4.2 Function block Figure 123: Function block 7.1.4.3 Signals CMMXU Input signals Table 207: CMMXU Input signals Name Type Default Description SIGNAL Phase A current SIGNAL Phase B current SIGNAL Phase C current BLOCK BOOLEAN 0=False Block signal for all bi- nary outputs CMMXU Output signals...
  • Page 192 Measurement functions 1MRS758407 C Parameter Values (Range) Unit Step Default Description A high limit 0.00...40.00 1.20 High warning cur- rent limit A low limit 0.00...40.00 0.00 Low warning cur- rent limit A low low limit 0.00...40.00 0.00 Low alarm current limit A deadband 100...100000...
  • Page 193 1MRS758407 C Measurement functions Name Type Values (Range) Unit Description Min demand IL2 FLOAT32 0.00...40.00 Minimum de- mand for Phase Min demand IL3 FLOAT32 0.00...40.00 Minimum de- mand for Phase Time max de- Timestamp Time of maxi- mand IL1 mum demand phase A Time max de- Timestamp...
  • Page 194 Measurement functions 1MRS758407 C Name Type Values (Range) Unit Description I_DMD_A FLOAT32 0.00...40.00 Demand value of IL1 current I_RANGE_A Enum IL1 Amplitude 0=normal range 1=high 2=low 3=high-high 4=low-low I_INST_B FLOAT32 0.00...40.00 IL2 Amplitude, magnitude of in- stantaneous val- I_ANGL_B FLOAT32 -180.00...180.00 IL2 current angle I_DB_B...
  • Page 195: Three-Phase Voltage Measurement Vmmxu

    1MRS758407 C Measurement functions 7.1.4.6 Technical data Table 212: CMMXU Technical data Characteristic Value Operation accuracy Depending on the frequency of the measured current: f ±2 Hz ±0.5 % or ±0.002 × I (at currents in the range of 0.01...4.00 × I Suppression of harmonics DFT: -50 dB at f = n ×...
  • Page 196 Measurement functions 1MRS758407 C 7.1.5.2 Function block Figure 124: Function block 7.1.5.3 Signals VMMXU Input signals Table 214: VMMXU Input signals Name Type Default Description U_A_AB SIGNAL Phase to earth volt- age A or phase to phase voltage AB U_B_BC SIGNAL Phase to earth volt- age B or phase to...
  • Page 197 1MRS758407 C Measurement functions Parameter Values (Range) Unit Step Default Description 5=off Num of phases 1=1 out of 3 Number of phases 1=1 out of 3 required by limit 2=2 out of 3 supervision 3=3 out of 3 V high high limit 0.00...4.00 1.40 High alarm voltage...
  • Page 198 Measurement functions 1MRS758407 C Name Type Values (Range) Unit Description HIGH_WARN BOOLEAN High warning 0=False 1=True LOW_WARN BOOLEAN Low warning 0=False 1=True LOW_ALARM BOOLEAN Low alarm 0=False 1=True U_INST_AB FLOAT32 0.00...4.00 U12 Amplitude, magnitude of in- stantaneous val- U_ANGL_AB FLOAT32 -180.00...180.00 U12 angle U_DB_AB...
  • Page 199 1MRS758407 C Measurement functions Name Type Values (Range) Unit Description U_ANGL_CA FLOAT32 -180.00...180.00 U31 angle U_DB_CA FLOAT32 0.00...4.00 U31 Amplitude, magnitude of re- ported value U_DMD_CA FLOAT32 0.00...4.00 Demand value of U31 voltage U_RANGE_CA Enum U31 Amplitude 0=normal range 1=high 2=low 3=high-high 4=low-low...
  • Page 200: Residual Current Measurement Rescmmxu

    Measurement functions 1MRS758407 C Characteristic Value RMS: No suppression 7.1.5.7 Technical revision history Table 220: VMMXU Technical revision history Technical revision Change Phase and phase-to-phase voltage angle val- ues and demand values added to Monitored data view. Internal improvement. Internal improvement. 7.1.6 Residual current measurement RESCMMXU 7.1.6.1...
  • Page 201 1MRS758407 C Measurement functions RESCMMXU Output signals Table 222: RESCMMXU Output signals Name Type Description HIGH_ALARM BOOLEAN High alarm HIGH_WARN BOOLEAN High warning 7.1.6.4 Settings RESCMMXU Non group settings Table 223: RESCMMXU Non group settings (Basic) Parameter Values (Range) Unit Step Default Description...
  • Page 202 Measurement functions 1MRS758407 C Name Type Values (Range) Unit Description HIGH_WARN BOOLEAN High warning 0=False 1=True I_INST_RES FLOAT32 0.00...40.00 Residual current Amplitude, mag- nitude of instan- taneous value I_ANGL_RES FLOAT32 -180.00...180.00 Residual current angle I_DB_RES FLOAT32 0.00...40.00 Residual current Amplitude, mag- nitude of repor- ted value I_DMD_RES...
  • Page 203: Frequency Measurement Fmmxu

    1MRS758407 C Measurement functions 7.1.6.7 Technical revision history Table 227: RESCMMXU Technical revision history Technical revision Change Residual current angle and demand value added to Monitored data view. Recorded da- ta added for minimum and maximum values with timestamps. Monitored data Min demand Io maximum val- ue range (RESCMSTA2.MinAmps.maxVal.f ) is corrected to 40.00.
  • Page 204 Measurement functions 1MRS758407 C FMMXU Input signals Table 228: FMMXU Input signals Name Type Default Description SIGNAL Measured system fre- quency 7.1.7.5 Settings FMMXU Non group settings Table 229: FMMXU Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on...
  • Page 205: Sequence Current Measurement Csmsqi

    1MRS758407 C Measurement functions Name Type Values (Range) Unit Description F_DB FLOAT32 35.00...75.00 Frequency, re- ported value F_RANGE Enum Measured fre- 0=normal quency range 1=high 2=low 3=high-high 4=low-low 7.1.7.7 Technical data Table 232: FMMXU Technical data Characteristic Value Operation accuracy ±5 mHz (in measurement range 35...75 Hz) 7.1.7.8...
  • Page 206 Measurement functions 1MRS758407 C 7.1.8.3 Signals CSMSQI Input signals Table 234: CSMSQI Input signals Name Type Default Description SIGNAL Zero sequence cur- rent SIGNAL Positive sequence current SIGNAL Negative sequence current 7.1.8.4 Settings CSMSQI Non group settings Table 235: CSMSQI Non group settings (Basic) Parameter Values (Range) Unit...
  • Page 207 1MRS758407 C Measurement functions Parameter Values (Range) Unit Step Default Description Ng Seq A low low 0.00...40.00 0.00 Low alarm current limit for negative sequence current Ng Seq A deadband 100...100000 2500 Deadband configu- ration value for negative sequence current for inte- gral calculation.
  • Page 208 Measurement functions 1MRS758407 C Name Type Values (Range) Unit Description I2_DB FLOAT32 0.00...40.00 Negative se- quence current amplitude, re- ported value I2_RANGE Enum Negative se- 0=normal quence current 1=high amplitude range 2=low 3=high-high 4=low-low I1_INST FLOAT32 0.00...40.00 Positive se- quence current amplitude, in- stantaneous val- I1_ANGL...
  • Page 209: Sequence Voltage Measurement Vsmsqi

    1MRS758407 C Measurement functions 7.1.8.6 Technical data Table 237: CSMSQI Technical data Characteristic Value Operation accuracy Depending on the frequency of the measured current: f/f = ±2 Hz ±1.0 % or ±0.002 × I at currents in the range of 0.01...4.00 × I Suppression of harmonics DFT: -50 dB at f = n ×...
  • Page 210 Measurement functions 1MRS758407 C VSMSQI Input signals Table 239: VSMSQI Input signals Name Type Default Description SIGNAL Zero sequence volt- SIGNAL Positive phase se- quence voltage SIGNAL Negative phase se- quence voltage 7.1.9.4 Settings VSMSQI Non group settings Table 240: VSMSQI Non group settings (Basic) Parameter Values (Range) Unit...
  • Page 211 1MRS758407 C Measurement functions Parameter Values (Range) Unit Step Default Description (percentage of dif- ference between min and max as 0,001 % s) Zro V Hi high Lim 0.00...4.00 0.20 High alarm voltage limit for zero se- quence voltage Zro V High limit 0.00...4.00 0.05 High warning volt-...
  • Page 212 Measurement functions 1MRS758407 C Name Type Values (Range) Unit Description U2_RANGE Enum Negative se- 0=normal quence voltage 1=high amplitude range 2=low 3=high-high 4=low-low U1_INST FLOAT32 0.00...4.00 Positive se- quence voltage amplitude, in- stantaneous val- U1_ANGL FLOAT32 -180.00...180.00 Positive se- quence voltage angle U1_DB FLOAT32...
  • Page 213: Three-Phase Power And Energy Measurement Pemmxu

    1MRS758407 C Measurement functions 7.1.9.6 Technical data Table 242: VSMSQI Technical data Characteristic Value Operation accuracy Depending on the frequency of the voltage measured: f ±2 Hz At voltages in range 0.01…1.15 × U ±1.0 % or ±0.002 × U Suppression of harmonics DFT: -50 dB at f = n ×...
  • Page 214 Measurement functions 1MRS758407 C Name Type Default Description SIGNAL Phase C voltage RSTACM BOOLEAN 0=False Reset of accumulated energy reading 7.1.10.4 Settings PEMMXU Non group settings Table 244: PEMMXU Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Operation 1=on Operation Off / On...
  • Page 215 1MRS758407 C Measurement functions PEMMXU Monitored data Table 246: PEMMXU Monitored data Name Type Values (Range) Unit Description S-kVA FLOAT32 -999999.9...9999 Total Apparent 99.9 Power P-kW FLOAT32 -999999.9...9999 Total Active Pow- 99.9 Q-kVAr FLOAT32 -999999.9...9999 kVAr Total Reactive 99.9 Power FLOAT32 -1.00...1.00 Average Power...
  • Page 216 Measurement functions 1MRS758407 C Name Type Values (Range) Unit Description PF_DB FLOAT32 -1.00...1.00 Power factor, magnitude of re- ported value PF_DMD FLOAT32 -1.00...1.00 Demand value of power factor EA_RV_ACM INT64 0...999999999 Accumulated re- verse active en- ergy value ER_RV_ACM INT64 0...999999999 kVArh Accumulated re-...
  • Page 217: Disturbance Recorder Rdre

    1MRS758407 C Measurement functions Name Type Values (Range) Unit Description Time max dmd Q Timestamp Time of maxi- mum demand Time min dmd Q Timestamp Time of mini- mum demand 7.1.10.6 Technical data Table 247: PEMMXU Technical data Characteristic Value Operation accuracy At all three currents in range 0.10…1.20 ×...
  • Page 218: Identification

    Measurement functions 1MRS758407 C 7.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Disturbance recorder RDRE 7.2.2 Functionality The merging unit is provided with a disturbance recorder featuring up to 12 analog and 64 binary signal channels. The analog channels can be set to trigger the recording function when the measured value falls below or exceeds the set values.
  • Page 219 1MRS758407 C Measurement functions Triggering by binary channels Input signals for the binary channels of the disturbance recorder can be formed from any of the digital signals that can be dynamically mapped. A change in the status of a monitored signal triggers the recorder according to the configuration and settings.
  • Page 220 Measurement functions 1MRS758407 C data from all analog and binary channels of the disturbance recorder, at the sample rate of 32 samples per fundamental cycle. The user can view the number of recordings currently in memory with the Number of recordings monitored data. The currently used memory space can be viewed with the Rec.
  • Page 221 1MRS758407 C Measurement functions Figure 130: Disturbance recorder file naming The naming convention of 8+3 characters is used in COMTRADE file naming. The file name is composed of the last two octets of the merging unit's IP number and a running counter, which has a range of 1...9999.
  • Page 222 Measurement functions 1MRS758407 C Storage rate and In the waveform mode, the samples are captured according to the Pre-trg length parameters. In the trend mode, one value is recorded for each enabled analog channel, once per fundamental cycle. The recorded values are RMS values, which are scaled to peak level.
  • Page 223: Configuration

    1MRS758407 C Measurement functions 7.2.2.10 Exclusion mode Exclusion time parameter is Exclusion mode is on, when the value set with the higher than zero. During the exclusion mode, new triggerings are ignored if the Exclusion time triggering reason is the same as in the previous recording. The parameter controls how long the exclusion of triggerings of same type is active after a triggering.
  • Page 224: Application

    Measurement functions 1MRS758407 C The states of manual triggering and periodic triggering are not included in the Periodic triggering and Manual recording, but they create a state change to the triggering status parameters, which in turn create events. The TRIGGERED output can be used to control the indication LEDs of the merging unit.
  • Page 225 1MRS758407 C Measurement functions Parameter Values Unit Step Default Description (Range) Pre-trg length 0...100 Length of the recording pre- ceding the triggering Operation 1=Saturation Operation mode mode of the 2=Overwrite recorder Exclusion 0...1 000 000 The time dur- time ing which triggerings of same type are ignored...
  • Page 226 Measurement functions 1MRS758407 C Table 252: RDRE Control data Parameter Values (Range) Unit Step Default Description Trig recording 0=Cancel Trigger the disturbance recording 1=Trig Clear record- 0=Cancel Clear all recordings cur- ings rently in memory 1=Clear Table 253: RDRE Non-group channel settings Parameter Values (Range) Unit...
  • Page 227: Monitored Data

    1MRS758407 C Measurement functions Parameter Values (Range) Unit Step Default Description 32=UL1 33=UL2 34=UL3 35=U12B 36=U23B 37=U31B 38=UL1B 39=UL2B 40=UL3B Channel id text 0 to 64 characters, al- DR analog Identification text for the analog phanumeric channel X channel used in the COMTRADE format High trigger level 0.00...60.00...
  • Page 228: Technical Revision History

    Measurement functions 1MRS758407 C 7.2.7 Technical revision history Table 255: RDRE Technical revision history Technical revision Change ChNum changed to EChNum (RADR's) RADR9...12 added (Analog channels 9...12) RBDR33...64 added (Binary channels 33...64) New channels added to parameter Channel selection Trig Recording and Clear Selection names for Recordings updated Channel selection setting are...
  • Page 229: Control Functions

    1MRS758407 C Control functions Control functions Circuit breaker control CBXCBR, Disconnector control DCXSWI and Earthing switch control ESXSWI 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE identification identification C37.2 device number Circuit breaker control CBXCBR I<->O CB I<->O CB Disconnector control DCXSWI I<->O DCC...
  • Page 230: Functionality

    Control functions 1MRS758407 C 8.1.3 Functionality CBXCBR, DCXSWI and ESXSWI are intended for circuit breaker, disconnector and earthing switch control and status information purposes. These functions execute commands and evaluate block conditions and different time supervision conditions. The functions perform an execution command only if all conditions indicate that a switch operation is allowed.
  • Page 231 1MRS758407 C Control functions energizing check. The input SYNC_ITL_BYP can be used for bypassing this control. The SYNC_ITL_BYP input can be used to activate CLOSE_ENAD discarding the ENA_CLOSE and SYNC_OK input states. However, the BLK_CLOSE input always blocks the CLOSE_ENAD output. The CB opening (OPEN_ENAD) logic is the same as CB closing logic, except that SYNC_OK is used only in closing.
  • Page 232 Control functions 1MRS758407 C ENA_CLOSE AU_CLOSE CL_REQ RESET Communication SYNC_OK SYNC_ITL_BYP POSCLOSE TRIP Operation timeout elapses Figure 133: Condition for enabling the close request (CL_REQ) for CBXCBR When the open command is given from communication, by activating the AU_OPEN input, it is processed only if OPEN_ENAD is TRUE. OP_REQ output is also available. ENA_OPEN OP_REQ AU_OPEN...
  • Page 233 1MRS758407 C Control functions OPEN_ENAD AU_OPEN Communica�on Adaptive pulse/ EXE_OP Pulse length TRIP Adaptive pulse/ EXE_CL Pulse length CLOSE_ENAD AU_CLOSE Communica�on Figure 135: OPEN and CLOSE outputs logic for CBXCBR Opening and closing pulse widths Adaptive pulse setting. The function The pulse width type can be defined with the provides two modes to characterize the opening and closing pulse widths.
  • Page 234: Application

    Control functions 1MRS758407 C capacity and bandwidth than the SBO method, because the procedure needs fewer messages for accurate operation. The “status-only” mode means that control is not possible (non-controllable) via communication. However, it is possible to control a disconnector (DCXSWI) from AU_OPEN and AU_CLOSE inputs.
  • Page 235: Signals

    1MRS758407 C Control functions the energizing phase, for example, the correct execution sequence of the control commands must be ensured. This can be achieved, for example, with interlocking based on the status indication of the related primary components. The interlocking on substation level can be applied using the IEC 61850 GOOSE messages between feeders.
  • Page 236 Control functions 1MRS758407 C Name Type Default Description BLK_OPEN BOOLEAN 0=False Blocks opening BLK_CLOSE BOOLEAN 0=False Blocks closing AU_OPEN BOOLEAN 0=False Auxiliary open AU_CLOSE BOOLEAN 0=False Auxiliary close TRIP BOOLEAN 0=False Trip signal SYNC_OK BOOLEAN 1=True Synchronism-check SYNC_ITL_BYP BOOLEAN 0=False Discards ENA_OPEN and ENA_CLOSE in- terlocking when TRUE...
  • Page 237 1MRS758407 C Control functions 8.1.6.3 ESXSWI Input signals Table 259: ESXSWI Input signals Name Type Default Description POSOPEN BOOLEAN 0=False Apparatus open posi- tion POSCLOSE BOOLEAN 0=False Apparatus close posi- tion ENA_OPEN BOOLEAN 1=True Enables opening ENA_CLOSE BOOLEAN 1=True Enables closing BLK_OPEN BOOLEAN 0=False...
  • Page 238: Settings

    Control functions 1MRS758407 C 8.1.6.5 ESXSWI Output signals Table 261: ESXSWI Output signals Name Type Description SELECTED BOOLEAN Object selected EXE_OP BOOLEAN Executes the command for open direction EXE_CL BOOLEAN Executes the command for close direction OPENPOS BOOLEAN Apparatus open position CLOSEPOS BOOLEAN Apparatus closed position...
  • Page 239 1MRS758407 C Control functions Parameter Values (Range) Unit Step Default Description Event delay 0...10000 Event delay of the intermediate posi- tion Vendor External equipment vendor Serial number External equipment serial number Model External equipment model 8.1.7.2 DCXSWI Non group settings Table 264: DCXSWI Non group settings (Basic) Parameter Values (Range)
  • Page 240: Monitored Data

    Control functions 1MRS758407 C Parameter Values (Range) Unit Step Default Description 5=off Select timeout 10000...300000 10000 30000 Select timeout in Pulse length 10...60000 Open and close pulse length Control model 4=sbo-with-en- Select control mod- 0=status-only hanced-security 1=direct-with-nor- mal-security 4=sbo-with-en- hanced-security Operation timeout 10...60000 30000...
  • Page 241: Technical Revision History

    1MRS758407 C Control functions 8.1.8.2 DCXSWI Monitored data Table 269: DCXSWI Monitored data Name Type Values (Range) Unit Description POSITION Dbpos Apparatus posi- 0=intermediate tion indication 1=open 2=closed 3=faulty 8.1.8.3 ESXSWI Monitored data Table 270: ESXSWI Monitored data Name Type Values (Range) Unit Description...
  • Page 242: Disconnector Position Indication Dcsxswi And Earthing Switch Indication Essxswi

    Control functions 1MRS758407 C Technical revision Change Default value changed to 30 s for Operation timeout setting. Outputs are forced OPENPOS CLOSEPOS to “FALSE” in case status is Faulty (11). Table 273: ESXSWI Technical revision history Technical revision Change Maximum and default values changed to 60 s Event delay settings.
  • Page 243: Operation Principle

    1MRS758407 C Control functions of both is identical, but each one is allocated for a specific purpose visible in the function names. For example, the status indication of disconnectors or circuit breaker truck can be monitored with the DCSXSWI function. The functions are designed according to the IEC 61850-7-4 standard with the logical node XSWI.
  • Page 244 Control functions 1MRS758407 C 8.2.6.1 DCSXSWI Input signals Table 275: DCSXSWI Input signals Name Type Default Description POSOPEN BOOLEAN 0=False Signal for open po- sition of apparatus from I/O POSCLOSE BOOLEAN 0=False Signal for close po- sition of apparatus from I/O 8.2.6.2 ESSXSWI Input signals Table 276: ESSXSWI Input signals...
  • Page 245: Settings

    1MRS758407 C Control functions 8.2.7 Settings 8.2.7.1 DCSXSWI Non group settings Table 279: DCSXSWI Non group settings (Basic) Parameter Values (Range) Unit Step Default Description Identification DCSXSWI1 switch Control Object position identification Table 280: DCSXSWI Non group settings (Advanced) Parameter Values (Range) Unit Step...
  • Page 246: Technical Revision History

    Control functions 1MRS758407 C Name Type Values (Range) Unit Description 1=open 2=closed 3=faulty 8.2.8.2 ESSXSWI Monitored data Table 284: ESSXSWI Monitored data Name Type Values (Range) Unit Description POSITION Dbpos Apparatus posi- 0=intermediate tion indication 1=open 2=closed 3=faulty 8.2.9 Technical revision history Table 285: DCSXSWI Technical revision history Technical revision Change...
  • Page 247: General Function Block Features

    1MRS758407 C General function block features General function block features Frequency measurement All the function blocks that use frequency quantity as their input signal share the common features related to the frequency measurement algorithm. The frequency estimation is done from one phase (phase-to-phase or phase voltage) or from the positive phase sequence (PPS).
  • Page 248: Calculated Measurements

    General function block features 1MRS758407 C The number of samples in a calculation cycle The current sample value Measurement mode setting The DFT measurement principle is selected with the using the value "DFT". In the DFT mode, the fundamental frequency component of the measured signal is numerically calculated from the samples.
  • Page 249 1MRS758407 C General function block features (Equation 21) + ⋅ ⋅ (Equation 22) ⋅ + ⋅ (Equation 23) VT connection is selected as “Delta”, the positive and negative phase When sequence voltage components are calculated from the phase-to-phase voltages according to the equations: −...
  • Page 250: Merging Unit's Physical Connections

    Merging unit's physical connections 1MRS758407 C Merging unit's physical connections 10.1 Module slot numbering Figure 140: Module slot numbering X000 X100 X110 X120 X130 SMU615 Technical Manual...
  • Page 251: Protective Earth Connections

    1MRS758407 C Merging unit's physical connections 10.2 Protective earth connections Figure 141: The protective earth screw is located between connectors X100 and X110 The earth lead must be at least 6.0 mm and as short as possible. 10.3 Binary and analog connections All binary and analog connections are described in the product specific application manuals.
  • Page 252: Ethernet Rj-45 Front Connection

    Merging unit's physical connections 1MRS758407 C Always install dust caps on unplugged fiber connectors. If contaminated, clean optical connectors only with fiber-optic cleaning products. 10.4.1 Ethernet RJ-45 front connection The merging unit is provided with an RJ-45 connector on the LHMI. The connector is intended for configuration and setting purposes.
  • Page 253: Communication Interfaces And Protocols

    1MRS758407 C Merging unit's physical connections 10.4.3 Communication interfaces and protocols The communication protocols supported depend on the optional rear communication module. Table 287: Supported station communication interfaces and protocols Interfaces/ Ethernet Protocols 100BASE-TX RJ-45 100BASE-FX LC IEC 61850-8-1 ● ●...
  • Page 254: Rear Communication Modules

    Merging unit's physical connections 1MRS758407 C 10.4.4 Rear communication modules COM0031 COM0032 COM0033 COM0037 3xRJ-45 2xLC+RJ-45+ 3xRJ-45+ 2xLC+RJ-45 ST+ARC ST+ARC Figure 142: Communication module options Ethernet ports marked with LAN A and LAN B are used with redundant Ethernet protocols HSR and PRP. The third port without the LAN A or LAN B label is an interlink port which is used as a redundancy box connector with redundant Ethernet protocols.
  • Page 255 1MRS758407 C Merging unit's physical connections Table 288: Station bus communication interfaces included in communication mod- ules Module ID RJ-45 EIA-485 EIA-232 COM0031 COM0032 COM0033 COM0037 Table 289: LED descriptions for COM0031-COM0033 and COM0037 Connector Description X1/LAN1 link status and activity X2/LAN2 link status and activity X3/LAN3 link status and activity COM1 fiber-optic receive activity...
  • Page 256: Technical Data

    Technical data 1MRS758407 C Technical data 11.1 Dimensions Table 290: Dimensions Description Value Width Frame 177 mm Case 164 mm Height Frame 177 mm (4U) Case 160 mm Depth 201 mm (153 + 48 mm) Weight Complete merging unit 4.1 kg Plug-in unit only 2.1 kg 11.2...
  • Page 257: Energizing Inputs

    1MRS758407 C Technical data 11.3 Energizing inputs Table 292: Energizing inputs Description Value Rated frequency 50/60 Hz Current inputs Rated current, I 0.2/1 A 1/5 A Thermal withstand capability: • Continuously 20 A • For 1 s 100 A 500 A Dynamic current with- stand: •...
  • Page 258: Energizing Inputs (Sim0005)

    Technical data 1MRS758407 C 11.5 Energizing Inputs (SIM0005) Table 294: Table 9: Energizing Inputs (SIM0005) Description Value Current sensor input Rated current voltage (in sec- 75 mV ... 9000 mV ondary side) Continuous voltage with- 125 V stand Input impedance at 50/60Hz 2 MΩ...
  • Page 259: Signal Outputs

    1MRS758407 C Technical data 11.7 Signal outputs Table 296: Signal output X100: SO1 Description Value Rated voltage 250 V AC/DC Continuous contact carry Make and carry for 3.0 s 15 A Make and carry for 0.5 s 30 A Breaking capacity when the control-circuit 1 A/0.25 A/0.15 A time constant L/R<40 ms, at 48/110/220 V Minimum contact load...
  • Page 260: Single-Pole Power Output Relays

    Technical data 1MRS758407 C Description Value • Current drain through the supervision cir- ~1.5 mA cuit • Minimum voltage over the TCS contact 20 V AC/DC (15...20 V) 11.9 Single-pole power output relays Table 299: Single-pole power output relays Description Value Rated voltage 250 V AC/DC...
  • Page 261: Ethernet Interfaces

    1MRS758407 C Technical data 11.11 Ethernet interfaces Table 301: Ethernet interfaces Ethernet Protocol Cable Data transfer interface rate Front TCP/IP protocol Standard Ethernet CAT 5 cable with 10 MBits/s RJ-45 connector Rear TCP/IP protocol Shielded twisted pair CAT 5e cable 100 MBits/s with RJ-45 connector or fiber optic cable with LC connector...
  • Page 262: Sampled Measured Values Accuracy

    Technical data 1MRS758407 C 11.14 Sampled measured values accuracy Table 304: Sampled measured values accuracy Description Value Phase current 20%...6000%I Amplitude: 1% or ±0.003×I Angle: ±2º Residual current 1%...5%I Amplitude: 0.001×I Angle: ±4º 5%...6000%I Amplitude: ±1% Angle: ±1º Phase voltage 80%...120% of U Amplitude: ±0.5% Angle: ±1º...
  • Page 263 1MRS758407 C Technical data Description Value Altitude Up to 2000 m Transport and storage temperature range -40...+85°C SMU615 Technical Manual...
  • Page 264: Merging Unit And Functionality Tests

    Merging unit and functionality tests 1MRS758407 C Merging unit and functionality tests 12.1 Electromagnetic compatibility tests Table 306: Electromagnetic compatibility tests Description Type test value Reference Slow damped oscillatory 2.5 kV IEC 60255-26:2013 wave immunity test 2.5 kV IEC 61000-4-18:2006+A1:2010 •...
  • Page 265: Insulation Tests

    1MRS758407 C Merging unit and functionality tests Description Type test value Reference Power frequency magnetic 300 A/m IEC 60255-26:2013 field immunity test 1000 A/m IEC 61000-4-8:2009 • Continuous GB 14598.26-2015 • 1...3 s Pulse magnetic field immuni- 1000 A/m IEC 61000-4-9:2001 ty test 6.4/16 µs GB 14598.26-2015...
  • Page 266: Mechanical Tests

    Merging unit and functionality tests 1MRS758407 C Description Type test value Reference 500 V, 50 Hz, 1 min, communication Impulse voltage test 5 kV, 1.2/50 μs, 0.5 J IEC 60255-272013 1 kV, 1.2/50 μs, 0.5 J, communication Insulation resistance meas- >100 MΩ, 500 V DC IEC 60255-272013 urements...
  • Page 267: Emc Compliance

    1MRS758407 C Merging unit and functionality tests Table 310: Product safety Description Reference LV directive 2006/95/EC Standard EN 60255-27 (2013) EN 60255-1 (2009) 12.6 EMC compliance Table 311: EMC compliance Description Reference EMC directive 2004/108/EC Standard EN 60255-26 (2013) SMU615 Technical Manual...
  • Page 268: Applicable Standards And Regulations

    Applicable standards and regulations 1MRS758407 C Applicable standards and regulations EN 60255-1 EN 60255-26 EN 60255-27 EMC council directive 2004/108/EC EU directive 2002/96/EC/175 IEC 60255 Low-voltage directive 2006/95/EC IEC 61850 BS EN 60255-26: 2013 BS EN 61000-6-2: 2005 BS EN 61000-6-4: 2019 BS EN 60255-1: 2010 BS EN 60255-27: 2014 SMU615...
  • Page 269: Glossary

    1MRS758407 C Glossary Glossary 100BASE-FX A physical medium defined in the IEEE 802.3 Ethernet standard for local area networks (LANs) that uses fiber optic cabling 100BASE-TX A physical medium defined in the IEEE 802.3 Ethernet standard for local area networks (LANs) that uses twisted-pair cabling category 5 or higher with RJ-45 connectors Alternating current 1.
  • Page 270 Glossary 1MRS758407 C IEC 61850 International standard for substation communication and modeling IEC 61850-8-1 A communication protocol based on the IEC 61850 standard series IEC 61850-9-2 A communication protocol based on the IEC 61850 standard series IEC 61850-9-2 LE Lite Edition of IEC 61850-9-2 offering process bus interface Intelligent electronic device IEEE 1686 Standard for Substation Intelligent Electronic Devices' (IEDs') Cyber Se-...
  • Page 271 1MRS758407 C Glossary XML-based substation description configuration language defined by IEC 61850 Signal Matrix tool in PCM600 SMU615 Substation merging unit Sampled measured values Software TCP/IP Transmission Control Protocol/Internet Protocol Trip-circuit supervision Type length value Coordinated universal time Voltage transformer Wide area network WHMI Web human-machine interface...
  • Page 272 — ABB Distribution Solutions Digital Substation Products P.O. Box 699 FI-65101 VAASA, Finland Phone +358 10 22 11 www.abb.com/mediumvoltage www.abb.com/relion www.abb.com/substationautomation © Copyright 2022 ABB. All rights reserved.

Table of Contents