ABB REL650 series Technical Manual

ABB REL650 series Technical Manual

Line distance protection
Hide thumbs Also See for REL650 series:
Table of Contents

Advertisement

®
Relion
650 series
Line distance protection REL650 ANSI
Technical manual

Advertisement

Table of Contents
loading

Summary of Contents for ABB REL650 series

  • Page 1 ® Relion 650 series Line distance protection REL650 ANSI Technical manual...
  • Page 3 Document ID: 1MRK 506 335-UUS Issued: October 2016 Revision: A Product version: 1.3 © Copyright 2013 ABB. All rights reserved...
  • Page 4 Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license.
  • Page 5 This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer.
  • Page 6 (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standard EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive.
  • Page 7: Table Of Contents

    Table of contents Table of contents Section 1 Introduction................37 This manual.................... 37 Intended audience.................. 37 Product documentation................38 Product documentation set..............38 Document revision history..............39 Related documents................39 Symbols and conventions...............40 Symbols.....................40 Document conventions..............41 Section 2 Available functions.............. 43 Main protection functions................43 Back-up protection functions..............
  • Page 8 Table of contents Identification..................69 Function block................... 70 Signals....................70 Basic part for LED indication module............71 Identification..................71 Function block................... 71 Signals....................71 Settings....................72 LCD part for HMI function keys control module........73 Identification..................73 Function block................... 73 Signals....................73 Settings....................73 Operation principle..................74 Local HMI...................74 Display..................74 LEDs.....................77...
  • Page 9 Table of contents Measuring principles..............120 CVT filter..................122 Simplified logic diagrams............122 Zone tripping logic..............123 Technical data................. 125 Phase selection with load encroachment, quadrilateral characteristic FDPSPDIS (21).............. 126 Identification..................126 Functionality..................127 Function block................. 127 Signals.....................128 Settings....................129 Operation principle................130 Phase-to-ground fault..............132 Phase-to-phase fault..............
  • Page 10 Table of contents Identification..................165 Functionality..................165 Function block................. 165 Signals.....................166 Settings....................166 Monitored data.................167 Operation principle................167 Phase preference logic PPLPHIZ............170 Identification..................170 Functionality..................170 Function block................. 170 Signals.....................171 Settings....................171 Operation principle................172 Operation principle..............172 Technical data................. 174 Power swing detection ZMRPSB (68)..........
  • Page 11 Table of contents Instantaneous phase overcurrent protection 3-phase output PHPIOC (50)..................189 Identification ................... 189 Functionality..................189 Function block................. 189 Signals.....................189 Settings....................190 Monitored data.................190 Operation principle................190 Technical data................. 191 Instantaneous phase overcurrent protection phase segregated output SPTPIOC (50)................191 Identification..................191 Functionality..................
  • Page 12 Table of contents Technical data................. 212 Instantaneous residual overcurrent protection EFPIOC (50N)..... 212 Identification ................... 213 Functionality..................213 Function block................. 213 Signals.....................213 Settings....................214 Monitored data.................214 Operation principle................214 Technical data................. 214 Four step residual overcurrent protection, zero, negative sequence direction EF4PTOC (51N/67N)............. 215 Identification ...................
  • Page 13 Table of contents Directional residual power protection measuring 3I · 3V · cos φ240 Directional residual current protection measuring 3I and φ..241 Directional functions..............242 Non-directional ground fault current protection......242 Residual overvoltage release and protection......242 Technical data................. 244 Time delayed 2-step undercurrent protection UC2PTUC (37)....245 Identification..................
  • Page 14 Table of contents Signals.....................263 Settings....................264 Monitored data.................264 Operation principle................265 Technical data................. 267 Stub protection STBPTOC (50STB)............. 268 Identification ................... 268 Functionality..................268 Function block................. 268 Signals.....................269 Settings....................269 Monitored data.................269 Operation principle................270 Technical data................. 270 Pole discrepancy protection CCRPLD (52PD)........271 Identification ...................
  • Page 15 Table of contents Signals..................280 Settings..................281 Monitored data................282 Directional underpower protection GUPPDUP (37)......282 Identification................282 Function block................282 Signals..................283 Settings..................283 Monitored data................284 Operation principle................284 Low pass filtering................286 Technical data................. 287 Negative sequence based overcurrent function DNSPTOC (46)..288 Identification..................288 Functionality..................
  • Page 16 Table of contents Signals.....................300 Settings....................301 Monitored data.................302 Operation principle................302 Measurement principle............... 303 Time delay.................. 303 Blocking..................304 Design..................305 Technical data................. 307 Two step residual overvoltage protection ROV2PTOV (59N)....307 Identification..................307 Functionality..................307 Function block................. 308 Signals.....................308 Settings....................309 Monitored data.................309 Operation principle................
  • Page 17 Table of contents Measurement principle............... 319 Time delay.................. 320 Blocking..................320 Design..................320 Technical data................. 320 Overfrequency protection SAPTOF (81)..........321 Identification..................321 Functionality..................321 Function block................. 322 Signals.....................322 Settings....................322 Monitored data.................322 Operation principle................323 Measurement principle............... 323 Time delay.................. 324 Blocking..................
  • Page 18 Table of contents Identification..................332 Functionality..................333 Function block................. 333 Signals.....................334 Settings....................334 Monitored data.................335 Operation principle................336 Zero and negative sequence detection........336 Delta current and delta voltage detection........337 Dead line detection..............340 Main logic................... 340 Technical data................. 344 Breaker close/trip circuit monitoring TCSSCBR........344 Identification..................
  • Page 19 Table of contents Technical data................. 363 Autorecloser for 3-phase operation SMBRREC (79)......363 Identification..................364 Functionality..................364 Function block................. 364 Signals.....................365 Settings....................366 Operation principle................367 Disabled and Enabled ......367 Auto-reclosing operation Initiate auto-reclosing and conditions for initiation of a reclosing cycle................
  • Page 20 Table of contents Signals..................391 Settings..................392 Circuit breaker SXCBR..............392 Signals..................392 Settings..................393 Circuit switch SXSWI............... 394 Signals..................394 Settings..................395 Bay control QCBAY................. 395 Identification ................395 Functionality................395 Function block................395 Signals..................396 Settings..................396 Local remote LOCREM..............396 Identification ................396 Functionality................396 Function block................397 Signals..................397 Settings..................397 Local remote control LOCREMCTRL..........
  • Page 21 Table of contents Function block................408 Logic diagram................409 Signals..................409 Settings..................410 Interlocking for busbar grounding switch BB_ES (3)....... 410 Identification................410 Functionality................410 Function block................410 Logic diagram................411 Signals..................411 Settings..................411 Interlocking for bus-section breaker A1A2_BS (3)......411 Identification................412 Functionality................412 Function block................
  • Page 22 Table of contents Identification................443 Functionality................443 Function block................444 Logic diagrams................446 Signals..................449 Settings..................453 Interlocking for line bay ABC_LINE (3)..........453 Identification................453 Functionality................453 Function block................455 Logic diagram................456 Signals..................461 Settings..................464 Interlocking for transformer bay AB_TRAFO (3)......464 Identification................
  • Page 23 Table of contents Function block................. 479 Signals.....................479 Settings....................480 Operation principle................480 IEC 61850 generic communication I/O functions DPGGIO....481 Identification..................481 Functionality..................481 Function block................. 482 Signals.....................482 Settings....................482 Operation principle................482 Single point generic control 8 signals SPC8GGIO....... 483 Identification..................483 Functionality..................
  • Page 24 Table of contents Function commands generic for IEC 60870-5-103 I103GENCMD..492 Functionality..................492 Function block................. 492 Signals.....................493 Settings....................493 IED commands with position and select for IEC 60870-5-103 I103POSCMD..................493 Functionality..................493 Function block................. 494 Signals.....................494 Settings....................494 Section 12 Scheme communication............ 495 Scheme communication logic with delta based blocking scheme signal transmit ZCPSCH (85)...............
  • Page 25 Table of contents Identification..................508 Functionality..................508 Function block................. 508 Signals.....................509 Settings....................509 Operation principle................510 Current reversal logic..............510 Weak-end infeed logic..............511 Technical data................. 512 Local acceleration logic ZCLCPLAL............. 513 Identification..................513 Functionality..................513 Function block................. 513 Signals.....................513 Settings....................514 Operation principle................
  • Page 26 Table of contents Fault current reversal logic............525 Weak-end infeed logic..............526 Technical data................. 527 Section 13 Logic..................529 Tripping logic common 3-phase output SMPPTRC (94).......529 Identification..................529 Functionality..................529 Function block................. 529 Signals.....................530 Settings....................530 Operation principle................530 Technical data................. 531 Tripping logic phase segregated output SPTPTRC 94......532 Identification..................
  • Page 27 Table of contents Reset-set with memory function block RSMEMORY....553 Technical data................. 555 Fixed signals FXDSIGN................556 Identification..................556 Functionality..................556 Function block................. 556 Signals.....................556 Settings....................557 Operation principle................557 Boolean 16 to integer conversion B16I..........557 Identification..................557 Functionality..................557 Function block................. 558 Signals.....................558 Settings....................559 Monitored data.................559...
  • Page 28 Table of contents Operation principle................568 Elapsed time integrator with limit transgression and overflow supervision TEIGGIO................569 Identification..................569 Functionality..................570 Function block................. 570 Signals.....................570 Settings....................571 Operation principle................571 Operation Accuracy..............573 Memory storage................573 Technical data................. 573 Section 14 Monitoring................575 Measurements..................575 Functionality..................
  • Page 29 Table of contents Voltage sequence measurement VMSQI........590 Identification ................590 Function block................590 Signals..................590 Settings..................591 Monitored data................592 Phase-neutral voltage measurement VNMMXU......593 Identification ................593 Function block................593 Signals..................593 Settings..................594 Monitored data................595 Operation principle................595 Measurement supervision............595 Measurements CVMMXN............599 Phase current measurement CMMXU........604 Phase-phase and phase-neutral voltage measurements VMMXU, VNMMXU..............
  • Page 30 Table of contents Technical data................. 613 Disturbance report................613 Functionality..................613 Disturbance report DRPRDRE............614 Identification................614 Function block................614 Signals..................614 Settings..................614 Monitored data................615 Analog input signals AxRADR............619 Identification................619 Function block................619 Signals..................619 Settings..................620 Analog input signals A4RADR............624 Identification................
  • Page 31 Table of contents Functionality..................644 Function block................. 645 Signals.....................645 Input signals................645 Operation principle................645 Technical data................. 646 Event recorder ..................646 Functionality..................646 Function block................. 647 Signals.....................647 Input signals................647 Operation principle................647 Technical data................. 648 Sequential of events................648 Functionality..................
  • Page 32 Table of contents Settings....................655 Operation principle................655 IEC 61850 generic communication I/O functions 16 inputs SP16GGIO655 Identification..................655 Functionality..................655 Function block................. 656 Signals.....................656 Settings....................657 MonitoredData................. 657 Operation principle................658 IEC 61850 generic communication I/O functions MVGGIO....658 Identification..................658 Functionality..................658 Function block.................
  • Page 33 Table of contents Functionality..................672 Signals.....................672 Settings....................673 Measured values................673 Monitored Data................673 Operation principle ................. 673 Technical data................. 675 Insulation gas monitoring function SSIMG (63)........675 Identification..................675 Functionality..................675 Function block................. 675 Signals.....................676 Settings....................676 Operation principle................677 Technical data................. 677 Insulation liquid monitoring function SSIML (71)........
  • Page 34 Table of contents Measurands for IEC 60870-5-103 I103MEAS........694 Functionality..................694 Function block................. 695 Signals.....................696 Settings....................696 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR..................697 Functionality..................697 Function block................. 697 Signals.....................697 Settings....................698 Function status auto-recloser for IEC 60870-5-103 I103AR....698 Functionality..................698 Function block.................
  • Page 35 Table of contents Settings....................706 Section 15 Metering................707 Pulse counter PCGGIO................ 707 Identification..................707 Functionality..................707 Function block................. 707 Signals.....................708 Settings....................708 Monitored data.................709 Operation principle................709 Technical data................. 710 Energy calculation and demand handling ETPMMTR......711 Identification..................711 Functionality..................711 Function block.................
  • Page 36 Table of contents GOOSE function block to receive a double point value GOOSEDPRCV..................725 Identification..................725 Functionality..................725 Function block................. 726 Signals.....................726 Settings....................726 Operation principle ................. 726 GOOSE function block to receive an integer value GOOSEINTRCV...727 Identification..................727 Functionality..................727 Function block.................
  • Page 37 Table of contents Generic security application component AGSAL........737 Generic security application AGSAL..........737 Security events on protocols SECALARM..........738 Security alarm SECALARM............. 738 Signals.....................738 Settings....................738 Section 17 Basic IED functions............739 Self supervision with internal event list ..........739 Functionality..................739 Internal error signals INTERRSIG...........
  • Page 38 Table of contents Identification................750 Settings..................750 Operation principle................750 General concepts............... 750 Real-time clock (RTC) operation..........752 Synchronization alternatives............753 Technical data................. 754 Parameter setting group handling............754 Functionality..................754 Setting group handling SETGRPS..........755 Identification................755 Settings..................755 Parameter setting groups ACTVGRP..........755 Identification................
  • Page 39 Table of contents Primary system values PRIMVAL............764 Identification..................764 Functionality..................764 Settings....................764 Signal matrix for analog inputs SMAI............764 Functionality..................764 Identification..................765 Function block................. 765 Signals.....................766 Settings....................767 Operation principle ................. 769 Summation block 3 phase 3PHSUM............ 773 Identification..................773 Functionality..................773 Function block.................
  • Page 40 Table of contents Signals.....................781 Settings....................781 Operation principle................781 Denial of service................... 781 Functionality..................781 Denial of service, frame rate control for front port DOSFRNT..782 Identification................782 Function block................782 Signals..................782 Settings..................782 Monitored data................783 Denial of service, frame rate control for LAN1 port DOSLAN1..783 Identification................
  • Page 41 Table of contents Energizing inputs.................. 802 Binary inputs..................803 Signal outputs..................803 Power outputs..................803 Data communication interfaces............804 Enclosure class..................805 Ingress protection................. 806 Environmental conditions and tests............806 Section 20 IED and functionality tests..........807 Electromagnetic compatibility tests............807 Insulation tests..................809 Mechanical tests................... 809 Product safety..................810 EMC compliance...................810 Section 21 Time inverse characteristics..........811...
  • Page 43: Section 1 Introduction

    Section 1 1MRK 506 335-UUS A Introduction Section 1 Introduction This manual The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data, sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.
  • Page 44: Product Documentation

    Section 1 1MRK 506 335-UUS A Introduction Product documentation 1.3.1 Product documentation set Engineering manual Installation manual Commissioning manual Operation manual Application manual Technical manual Communication protocol manual IEC07000220-3-en.vsd IEC07000220 V3 EN Figure 1: The intended use of manuals throughout the product lifecycle The engineering manual contains instructions on how to engineer the IEDs using the various tools available within the PCM600 software.
  • Page 45: Document Revision History

    Section 1 1MRK 506 335-UUS A Introduction during the testing phase. The manual provides procedures for the checking of external circuitry and energizing the IED, parameter setting and configuration as well as verifying settings by secondary injection. The manual describes the process of testing an IED in a substation which is not in service.
  • Page 46: Symbols And Conventions

    Section 1 1MRK 506 335-UUS A Introduction 650 series manuals Identity number Communication protocol manual, DNP 3.0 1MRK 511 280-UUS Communication protocol manual, IEC 61850–8–1 1MRK 511 281-UUS Communication protocol manual, IEC 60870-5-103 1MRK 511 282-UUS Cyber Security deployment guidelines 1MRK 511 285-UUS Point list manual, DNP 3.0 1MRK 511 283-UUS...
  • Page 47: Document Conventions

    Section 1 1MRK 506 335-UUS A Introduction The tip icon indicates advice on, for example, how to design your project or how to use a certain function. Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death.
  • Page 49: Section 2 Available Functions

    Section 2 1MRK 506 335-UUS A Available functions Section 2 Available functions Main protection functions IEC 61850 or ANSI Function description Line Distance Function name Impedance protection ZQMPDIS Five zone distance protection, quadrilateral and mho characteristic FDPSPDIS Phase selection with load enchroachment, quadrilateral characteristic FMPSPDIS Faulty phase identification with load enchroachment for mho...
  • Page 50 Section 2 1MRK 506 335-UUS A Available functions IEC 61850 or ANSI Function description Line Distance Function name OC4PTOC 51/67 Four step phase overcurrent protection, 3-phase 0–1 output OC4SPTOC 51/67 Four step phase overcurrent protection, phase 0–1 segregated output EFPIOC Instantaneous residual overcurrent protection 0–1 EF4PTOC...
  • Page 51: Control And Monitoring Functions

    Section 2 1MRK 506 335-UUS A Available functions Control and monitoring functions IEC 61850 or Function ANSI Function description Line Distance name Control SESRSYN Synchrocheck, energizing check, and 0–2 synchronizing SMBRREC Autorecloser for 3–phase operation 0–2 STBRREC Autorecloser for 1/3–phase operation 0–1 SLGGIO Logic Rotating Switch for function selection and...
  • Page 52 Section 2 1MRK 506 335-UUS A Available functions IEC 61850 or Function ANSI Function description Line Distance name DB_LINE Interlocking for double CB bay ABC_LINE Interlocking for line bay AB_TRAFO Interlocking for transformer bay SCSWI Switch controller QCBAY Bay control LOCREM Handling of LR-switch positions LOCREMCTRL...
  • Page 53 Section 2 1MRK 506 335-UUS A Available functions IEC 61850 or Function ANSI Function description Line Distance name XORQT Configurable logic blocks Q/T 0–40 SRMEMORYQT Configurable logic blocks Q/T 0–40 RSMEMORYQT Configurable logic blocks Q/T 0–40 TIMERSETQT Configurable logic blocks Q/T 0–40 PULSETIMERQT Configurable logic blocks Q/T...
  • Page 54 Section 2 1MRK 506 335-UUS A Available functions IEC 61850 or Function ANSI Function description Line Distance name L4UFCNT Event counter with limit supervision DRPRDRE Disturbance report AnRADR Analog input signals BnRBDR Binary input signals SPGGIO IEC 61850 generic communication I/O functions SP16GGIO IEC 61850 generic communication I/O functions 16 inputs...
  • Page 55: Station Communication

    Section 2 1MRK 506 335-UUS A Available functions Station communication IEC 61850 or Function ANSI Function description Line Distance name Station communication IEC61850-8-1 IEC 61850 communication protocol DNPGEN DNP3.0 communication general protocol RS485DNP DNP3.0 for RS-485 communication protocol CH1TCP DNP3.0 for TCP/IP communication protocol CH2TCP DNP3.0 for TCP/IP communication protocol CH3TCP...
  • Page 56: Basic Ied Functions

    Section 2 1MRK 506 335-UUS A Available functions IEC 61850 or Function ANSI Function description Line Distance name CONFPROT IED Configuration Protocol ACTIVLOG Activity logging parameters SECALARM Component for mapping security events on protocols such as DNP3 and IEC103 AGSAL Generic security application component GOOSEDPRCV GOOSE function block to receive a double point...
  • Page 57 Section 2 1MRK 506 335-UUS A Available functions IEC 61850/Function Function description block name DTSBEGIN, DTSEND, Time synchronization, daylight saving TIMEZONE IRIG-B Time synchronization SETGRPS Setting group handling ACTVGRP Parameter setting groups TESTMODE Test mode functionality CHNGLCK Change lock function PRIMVAL Primary system values SMAI_20_1 -...
  • Page 59: Section 3 Analog Inputs

    Section 3 1MRK 506 335-UUS A Analog inputs Section 3 Analog inputs Introduction Analog input channels in the IED must be set properly in order to get correct measurement results and correct protection operations. For power measuring and all directional and differential functions the directions of the input currents must be defined in order to reflect the way the current transformers are installed/connected in the field ( primary and secondary connections ).
  • Page 60: Presumptions For Technical Data

    Section 3 1MRK 506 335-UUS A Analog inputs • Forward means the direction is into the object. • Reverse means the direction is out from the object. Definition of direction Definition of direction for directional functions for directional functions Reverse Forward Forward Reverse...
  • Page 61: Settings

    Section 3 1MRK 506 335-UUS A Analog inputs have corresponding primary quantity, the 1:1 ratio shall be set for the used analogue inputs on the IED, For example, HZPDIF. • Parameter IBase used by the tested function is set equal to the rated CT primary current.
  • Page 62 Section 3 1MRK 506 335-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTprim2 1 - 99999 1000 Rated CT primary current CTStarPoint3 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000...
  • Page 63 Section 3 1MRK 506 335-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec4 0.1 - 10.0...
  • Page 64 Section 3 1MRK 506 335-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec3 0.1 - 10.0 Rated CT secondary current CTprim3 1 - 99999 1000 Rated CT primary current CTStarPoint4 FromObject ToObject ToObject= towards protected object, ToObject FromObject= the opposite CTsec4 0.1 - 10.0...
  • Page 65 Section 3 1MRK 506 335-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTprim4 1 - 99999 1000 Rated CT primary current VTsec5 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim5 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec6 0.001 - 999.999...
  • Page 66 Section 3 1MRK 506 335-UUS A Analog inputs Name Values (Range) Unit Step Default Description CTsec6 0.1 - 10.0 Rated CT secondary current CTprim6 1 - 99999 1000 Rated CT primary current VTsec7 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim7 0.001 - 9999.999 0.001...
  • Page 67 Section 3 1MRK 506 335-UUS A Analog inputs Name Values (Range) Unit Step Default Description VTprim8 0.001 - 9999.999 0.001 Rated VT primary voltage VTsec9 0.001 - 999.999 0.001 110.000 Rated VT secondary voltage VTprim9 0.001 - 9999.999 0.001 132.000 Rated VT primary voltage VTsec10 0.001 - 999.999...
  • Page 69: Section 4 Binary Input And Output Modules

    Section 4 1MRK 506 335-UUS A Binary input and output modules Section 4 Binary input and output modules Binary input 4.1.1 Binary input debounce filter The debounce filter eliminates bounces and short disturbances on a binary input. A time counter is used for filtering. The time counter is increased once in a millisecond when a binary input is high, or decreased when a binary input is low.
  • Page 70: Settings

    Section 4 1MRK 506 335-UUS A Binary input and output modules Each binary input has an oscillation count parameter OscillationCountx and an oscillation time parameter OscillationTimex, where x is the number of the binary input of the module in question. 4.1.3 Settings 4.1.3.1...
  • Page 71: Setting Parameters For Communication Module

    Section 4 1MRK 506 335-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description Threshold6 6 - 900 Threshold in percentage of station battery voltage for input 6 DebounceTime6 0.000 - 0.100 0.001 0.005 Debounce time for input 6 OscillationCount6 0 - 255 Oscillation count for input 6...
  • Page 72 Section 4 1MRK 506 335-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationTime2 0.000 - 600.000 0.001 0.000 Oscillation time for input 2 Threshold3 6 - 900 Threshold in percentage of station battery voltage for input 3 DebounceTime3 0.000 - 0.100 0.001...
  • Page 73 Section 4 1MRK 506 335-UUS A Binary input and output modules Name Values (Range) Unit Step Default Description OscillationCount10 0 - 255 Oscillation count for input 10 OscillationTime10 0.000 - 600.000 0.001 0.000 Oscillation time for input 10 Threshold11 6 - 900 Threshold in percentage of station battery voltage for input 11 DebounceTime11...
  • Page 75: Section 5 Local Human-Machine-Interface Lhmi

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Section 5 Local Human-Machine-Interface LHMI Local HMI screen behaviour 5.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local HMI screen behaviour SCREEN 5.1.2 Settings Table 12: SCREEN Non group settings (basic) Name Values (Range)
  • Page 76: Function Block

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI 5.2.2 Function block LHMICTRL CLRLEDS HMI-ON RED-S YELLOW-S YELLOW-F CLRPULSE LEDSCLRD IEC09000320-1-en.vsd IEC09000320 V1 EN Figure 3: LHMICTRL function block 5.2.3 Signals Table 13: LHMICTRL Input signals Name Type Default Description CLRLEDS BOOLEAN Input to reset the LCD-HMI LEDs...
  • Page 77: Basic Part For Led Indication Module

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Basic part for LED indication module 5.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Basic part for LED indication module LEDGEN Basic part for LED indication module GRP1_LED1 - GRP1_LED15 GRP2_LED1 -...
  • Page 78: Settings

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Table 16: GRP1_LED1 Input signals Name Type Default Description HM1L01R BOOLEAN Red indication of LED1, local HMI alarm group 1 HM1L01Y BOOLEAN Yellow indication of LED1, local HMI alarm group 1 HM1L01G BOOLEAN Green indication of LED1, local HMI alarm group 1...
  • Page 79: Lcd Part For Hmi Function Keys Control Module

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI LCD part for HMI function keys control module 5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number LCD part for HMI Function Keys Control FNKEYMD1 - module FNKEYMD5 5.4.2...
  • Page 80: Operation Principle

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Table 23: FNKEYTY1 Non group settings (basic) Name Values (Range) Unit Step Default Description Type Disabled Disabled Function key type Menu shortcut Control MenuShortcut Menu shortcut for function key Operation principle 5.5.1 Local HMI ANSI12000175 V1 EN...
  • Page 81 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI IEC13000063-1-en.vsd IEC13000063 V1 EN Figure 8: Display layout 1 Path 2 Content 3 Status 4 Scroll bar (appears when needed) • The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.
  • Page 82 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI IEC13000045-1-en.vsd IEC13000045 V1 EN Figure 9: Truncated path The number before the function instance, for example ETHFRNT:1, indicates the instance number. The function button panel shows on request what actions are possible with the function buttons.
  • Page 83: Leds

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI GUID-D20BB1F1-FDF7-49AD-9980-F91A38B2107D V1 EN Figure 11: Alarm LED panel The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display.
  • Page 84 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI The keypad also contains programmable push-buttons that can be configured either as menu shortcut or control buttons. ANSI11000247 V2 EN Figure 12: LHMI keypad with object control, navigation and command push buttons and RJ-45 communication port 1...5 Function button Close...
  • Page 85: Functionality

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI 5.5.2 5.5.2.1 Functionality The function blocks LEDGEN and GRP1_LEDx, GRP2_LEDx and GRP3_LEDx (x=1-15) controls and supplies information about the status of the indication LEDs. The input and output signals of the function blocks are configured with PCM600. The input signal for each LED is selected individually using SMT or ACT.
  • Page 86 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI and a restart at a new disturbance. A disturbance is defined to end a settable time after the reset of the activated input signals or when the maximum time limit has elapsed. Acknowledgment/reset •...
  • Page 87 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI In the sequence diagrams the LEDs have the following characteristics: = No indication = Steady light = Flash = Green = Red = Yellow IEC09000311.vsd IEC09000311 V1 EN Figure 13: Symbols used in the sequence diagrams Sequence 1 (Follow-S) This sequence follows all the time, with a steady light, the corresponding input signals.
  • Page 88 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Sequence 3 LatchedAck-F-S This sequence has a latched function and works in collecting mode. Every LED is independent of the other LEDs in its operation. At the activation of the input signal, the indication starts flashing.
  • Page 89 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Activating signal GREEN Activating signal YELLOW Activating signal RED Acknow. IEC09000314-1-en.vsd IEC09000314 V1 EN Figure 18: Operating sequence 3, three colors involved, alternative 1 If an indication with higher priority appears after acknowledgment of a lower priority indication the high priority indication will be shown as not acknowledged according to Figure Activating...
  • Page 90 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI 3 and 4 is that indications that are still activated will not be affected by the reset that is, immediately after the positive edge of the reset has been executed a new reading and storing of active signals is performed.
  • Page 91 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI LEDs set for sequence 6 are completely independent in its operation of LEDs set for other sequences. Timing diagram for sequence 6 Figure 22 shows the timing diagram for two indications within one disturbance. Disturbance tRestart Activating...
  • Page 92 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Disturbance Disturbance tRestart tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000240_2_en.vsd IEC01000240 V2 EN Figure 23: Operating sequence 6 (LatchedReset-S), two different disturbances Figure 24 shows the timing diagram when a new indication appears after the first one has reset but before tRestart has elapsed.
  • Page 93 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000241_2_en.vsd IEC01000241 V2 EN Figure 24: Operating sequence 6 (LatchedReset-S), two indications within same disturbance but with reset of activating signal between Figure 25 shows the timing diagram for manual reset.
  • Page 94: Function Keys

    Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Disturbance tRestart Activating signal 1 Activating signal 2 LED 1 LED 2 Automatic reset Manual reset IEC01000242_2_en.vsd IEC01000242 V2 EN Figure 25: Operating sequence 6 (LatchedReset-S), manual reset 5.5.3 Function keys 5.5.3.1 Functionality Local Human-Machine-Interface (LHMI) has five function buttons, directly to the left of...
  • Page 95 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI FNKEYMD1 - FNKEYMD5 function block also has a number of settings and parameters that control the behavior of the function block. These settings and parameters are normally set using the PST. Operating sequence The operation mode is set individually for each output, either OFF, TOGGLE or PULSED.
  • Page 96 Section 5 1MRK 506 335-UUS A Local Human-Machine-Interface LHMI Input value Output value pulse pulse IEC09000332_1_en.vsd IEC09000332 V1 EN Figure 28: Sequence diagram for setting PULSED Input function All inputs work the same way: When the LHMI is configured so that a certain function button is of type CONTROL, then the corresponding input on this function block becomes active, and will light the yellow function button LED when high.
  • Page 97: Five Zone Distance Protection, Quadrilateral And Mho Characteristic Zqmpdis (21)

    Section 6 1MRK 506 335-UUS A Impedance protection Section 6 Impedance protection Five zone distance protection, quadrilateral and mho characteristic ZQMPDIS (21) 6.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Five zone distance protection, ZQMPDIS quadrilateral and mho characteristic S00346 V1 EN...
  • Page 98: Function Block

    Section 6 1MRK 506 335-UUS A Impedance protection 6.1.3 Function block ZQMPDIS (21) I3P* TRIP V3P* TR_A UPOL TR_B BLOCK TR_C BLKTR TRZ1 BLKPG TRZ2 BLKPP TRZ3 BLKZ TRZ4 EXTNST TRZ5 DIRCND BFI_3P PHSEL PU_A BLDCND BFI_B LDCND PU_C PU_Z1 PU_Z2 Z3_PU Z4_PU...
  • Page 99: Settings

    Section 6 1MRK 506 335-UUS A Impedance protection Table 25: ZQMPDIS (21) Output signals Name Type Description TRIP BOOLEAN General trip TR_A BOOLEAN Trip signal for L1 TR_B BOOLEAN Trip signal for L2 TR_C BOOLEAN Trip signal for L3 TRZ1 BOOLEAN Trip signal Zone1 TRZ2...
  • Page 100 Section 6 1MRK 506 335-UUS A Impedance protection Name Values (Range) Unit Step Default Description CharPEZ1 Disabled Disabled Characteristic selection for phase to ground Zone 1 Quadrilateral Combined CharPPZ1 Disabled Disabled Characteristic selection for phase to phase Zone 1 Quadrilateral Combined DirModeZ1 Disabled...
  • Page 101 Section 6 1MRK 506 335-UUS A Impedance protection Name Values (Range) Unit Step Default Description MhoCharZ2 Directional Directional Characteristic of directional mho for Zone 2 Offset 0.005 - 3000.000 ohm/p 0.001 30.000 Forward reach setting for Zone 2 Z2Rev 0.005 - 3000.000 ohm/p 0.001 30.000...
  • Page 102 Section 6 1MRK 506 335-UUS A Impedance protection Name Values (Range) Unit Step Default Description OpModetPEZ3 Disabled Disabled Enable time delay to operate phase to ground Enabled for Zone 3 tPEZ3 0.000 - 60.000 0.001 0.000 Time delay to operate of phase to ground for Zone 3 OpModetPPZ3 Disabled...
  • Page 103 Section 6 1MRK 506 335-UUS A Impedance protection Name Values (Range) Unit Step Default Description CharPPZ5 Disabled Disabled Characteristic selection for phase to phase Zone 5 Quadrilateral Combined DirModeZ5 Disabled Disabled Direction setting for Zone 5 Non-directional Forward Reverse MhoCharZ5 Directional Directional Characteristic of directional mho for Zone 5...
  • Page 104: Operation Principle

    Section 6 1MRK 506 335-UUS A Impedance protection Name Values (Range) Unit Step Default Description LEModeZ4 Disabled Disabled Enable load enchroachment mode Zone 4 Enabled BlndModeZ4 Disabled Disabled Blinder mode Zone 4 Enabled LEModeZ5 Disabled Disabled Enable load enchroachment mode Zone 5 Enabled BlndModeZ5 Disabled...
  • Page 105: Full Scheme Measurement

    Section 6 1MRK 506 335-UUS A Impedance protection I Comp PRECALCULATION ZONE-1 V Pol ZONE-2 RELE START RELEASE ZONE-3 TRIP LOGIC LOGI ZONE-4 ZONE-5 ANSI11000271-2-en.vsd ANSI11000271 V2 EN Figure 30: ZQMPDIS logic diagram 6.1.6.2 Full scheme measurement The execution of the different fault loops within the IED are of full scheme type, which means that each fault loop for phase-to-ground faults and phase-to-phase faults for forward and reverse faults are executed in parallel.
  • Page 106: Quadrilateral Characteristic

    Section 6 1MRK 506 335-UUS A Impedance protection Zone 1 A- B B - C Zone 2 B -C C- A A- B Zone 3 A- B Zone 4 A- B C -A Zone 5 A- B B -C C -A Zone 6 A- B B - C...
  • Page 107 Section 6 1MRK 506 335-UUS A Impedance protection X (Ohm/loop) * Load compensation characteristic is present only for zone 1 phase-to- ground measurement loops. (Ohm/loop) IEC09000308_2_en.vsd IEC09000308 V2 EN Figure 32: Characteristic for phase-to-ground measuring RFPG KNMag |Z| where: KN·Z =ZN where Z denotes the positive sequence vector corresponding to the zone reach LineAng...
  • Page 108 Section 6 1MRK 506 335-UUS A Impedance protection /phase) /phase) IEC09000309_2_en.vsd IEC09000309 V2 EN Figure 33: Characteristic for phase-to-phase measuring RFPP 1 0.5 · LineAng The fault loop reach with respect to each fault type is presented as in figure 34. Note in particular the difference in definition regarding the (fault) resistive reach for phase-to- phase faults and three-phase faults.
  • Page 109 Section 6 1MRK 506 335-UUS A Impedance protection Phase-to-ground element Phase-to-ground RFPG fault in phase A (Arc + tower resistance) KN·Z1 Phase-to-phase element A-B Phase-to-phase RFPP fault in phase A-B (Arc resistance) 0.5·RFPP Phase-to-phase element A-C Three-phase fault 0.5·RFPP ANSI09000242_2_en.vsd ANSI09000242 V2 EN Figure 34: Fault loop model...
  • Page 110 Section 6 1MRK 506 335-UUS A Impedance protection and reverse settings - Zx and ZxRev respectively, where x = 1 - 5). All other reach settings apply to both directions. Non-directional Forward Reverse en05000182.vsd IEC05000182 V1 EN Figure 35: Directional operating modes of the distance measuring zones Theory of operation The quadrilateral characteristic is implemented with reach characteristic and blinder characteristic.
  • Page 111 Section 6 1MRK 506 335-UUS A Impedance protection Blinder B, ref la+pi/2 Blinder B, ref IZ KR L line, ref la L line, ref la+|Kn|·IN Resulting characteristic Zx Rev L line, ref la L line, ref la+|Kn|·IN *IZKR=(I+IN·KN)·LineAng·Zx IEC11000268_1_en.vsd IEC11000268 V1 EN Figure 36: Quadrilateral characteristic with Reach and Blinder characteristic Reach characteristic...
  • Page 112 Section 6 1MRK 506 335-UUS A Impedance protection Based on these voltages the reach characteristic is implemented with Sine comparator (TRUE, if {Im(S1) · Re(S2) - Im(S2) · Re(S1)}>0) for following comparisons: < < 0 arg(I) arg(VKRForward) 180 (Equation 3) GUID-797D640A-0107-4C8F-B8EF-A71E116535FB V1 EN <...
  • Page 113 Section 6 1MRK 506 335-UUS A Impedance protection Blinder characteristic The blinder characteristic looks for the resistive reach part of the quadrilateral characteristic. Following calculations of forward and reverse voltages are done for this. For phase to ground loop: - × V I RFPGx + ×...
  • Page 114: Mho Characteristic

    Section 6 1MRK 506 335-UUS A Impedance protection IZKR IZKR IZKR 360° 0° I·RF 180° 180° ANSI11000267_1_en.vsd ANSI11000267 V1 EN Figure 38: Blinder characteristic part of quadrilateral characteristic When both the conditions are true then comparator is set as TRUE. In phase to ground loop: ×...
  • Page 115 Section 6 1MRK 506 335-UUS A Impedance protection Mho, zone4 Mho, zone3 Zs=0 Mho, zone2 Mho, zone1 Zs=Z1 Zs=2Z1 Offset mho, zone5 IEC09000143_2_en.vsd IEC09000143 V2 EN Figure 39: Mho, offset mho characteristic and the source impedance influence on the mho characteristic The mho characteristic has a dynamic expansion due to the source impedance.
  • Page 116 Section 6 1MRK 506 335-UUS A Impedance protection During offset mode or if DirModeZx (where x is 1-5 depending on selected zone) is selected as Non-directional, ZDNRDIR will not have any effect on the measurement loop and operation of the function. When MhoCharZx (where x is 1-5 depending on selected zone) is selected as Directional and DirModeZx (where x is 1-5 depending on selected zone) is selected as Forward or Reverse, a directional line is introduced.
  • Page 117 Section 6 1MRK 506 335-UUS A Impedance protection Z0-Z1 KNMag = × 3 Z1 (Equation 13) EQUATION1579 V1 EN KNAng × (Equation 14) EQUATION1807-ANSI V1 EN where is the complex zero sequence impedance of the line in Ω/phase is the complex positive sequence impedance of the line in Ω/phase The phase-to-ground and phase-to-phase measuring loops can be time delayed individually by setting the parameter tPGZx and tPPZx (where x is 1-5 depending on selected zone) respectively.
  • Page 118 Section 6 1MRK 506 335-UUS A Impedance protection where is the voltage vector difference between phases A and B EQUATION1790-ANSI V1 EN is the current vector difference between phases A and B EQUATION1791-ANSI V1 EN is the positive sequence impedance setting for fault is the polarizing voltage The polarized voltage consists of 100% memorized positive sequence voltage (VAB for phase A to B fault).
  • Page 119 Section 6 1MRK 506 335-UUS A Impedance protection The condition for operation at phase-to-phase fault is that the angle β between the two compensated voltages Vcomp1 and Vcomp2 is greater than or equal to 90° (figure 42). The angle will be 90° for fault location on the boundary of the circle. The angle β...
  • Page 120 Section 6 1MRK 506 335-UUS A Impedance protection When forward direction has been selected for the offset mho, an extra criteria beside the one for offset mho (90<β<270) is introduced, that is the angle φ between the voltage and the current must lie between the blinders in second quadrant and fourth quadrant. See figure 43.
  • Page 121 Section 6 1MRK 506 335-UUS A Impedance protection The β is derived according to equation for the mho circle and φ is the angle between the voltage and current. ArgNegRes ArgDir ZRev ANSI09000119-1-en.vsd ANSI09000119 V1 EN Figure 44: Operation characteristic for reverse phase A-to-B fault Phase-to-ground fault The measuring of ground faults uses ground-return compensation applied in a conventional way.
  • Page 122 Section 6 1MRK 506 335-UUS A Impedance protection where is the positive sequence impedance of the line (Ohm/phase) is the zero-sequence compensator factor The angle β between the Vcomp and the polarize voltage Vpol for a A-to-ground fault is é ù...
  • Page 123 Section 6 1MRK 506 335-UUS A Impedance protection A· ·ZN comp ß • loop ·Z Vpol ·R ( Ref) ANSI09000120-1-en.vsd ANSI09000120 V1 EN Figure 45: Simplified offset mho characteristic and vector diagram for phase A-to- ground fault Operation occurs if 90≤β≤270. Offset mho The characteristic for offset mho at ground fault is a circle containing the two vectors from the origin Z and ZRev where Z and Zrev are the setting reach for the positive sequence...
  • Page 124 Section 6 1MRK 506 335-UUS A Impedance protection AB· ·Z Vcomp1 ·Z ß ZRev Vcomp2 • AB· • ANSI09000121-1-en.vsd ANSI09000121 V1 EN Figure 46: Simplified offset mho characteristic and voltage vector for phase A-to- ground fault Operation occurs if 90≤β≤270. Offset mho, forward direction In the same way as for phase-to-phase fault, selection of forward direction of offset mho will introduce an extra criterion for operation.
  • Page 125 Section 6 1MRK 506 335-UUS A Impedance protection ArgNegRes IA·R ArgDir en 06000466 _ansi.vsd ANSI06000466 V1 EN Figure 47: Simplified characteristic for offset mho in forward direction for A-to- ground fault Offset mho, reverse direction In the same way as for offset in forward direction, the selection of offset mho in reverse direction will introduce an extra criterion for operation compare to the normal offset mho.
  • Page 126: Minimum Operating Current

    Section 6 1MRK 506 335-UUS A Impedance protection ArgNegRes ArgDir ZRev ANSI09000123-2-en.vsd ANSI09000123 V2 EN Figure 48: Simplified characteristic for offset mho in reverse direction for A-to- ground fault 6.1.6.5 Minimum operating current The operation of Five zone distance protection, quadrilateral and mho characteristic (ZQMPDIS, 21) is blocked if the magnitude of input currents fall below certain threshold values.
  • Page 127 Section 6 1MRK 506 335-UUS A Impedance protection apparent impedances at phase-to-phase faults follow equation (example for a phase A to phase B fault). (Equation 23) EQUATION1545 V1 EN Here V and I represent the corresponding voltage and current phasors in the respective phase Ln (n = 1, 2, 3) The ground return compensation applies in a conventional manner to phase-to-ground faults (example for a phase A to ground fault) according to equation 24.
  • Page 128: Cvt Filter

    Section 6 1MRK 506 335-UUS A Impedance protection The apparent impedance is considered as an impedance loop with resistance R and reactance X. The formula given in equation is only valid for radial feeder application without load. When load is considered in the case of single phase-to-ground fault, conventional distance protection might overreach at exporting end and underreach at importing end.
  • Page 129: Zone Tripping Logic

    Section 6 1MRK 506 335-UUS A Impedance protection The PHSEL input signal represents a connection of six different integer values from Phase selection with load encroachment, FDPSPDIS or FMPSPDIS (21) within the IED, which are converted within the zone measuring function into corresponding boolean expressions for each condition separately.
  • Page 130 Section 6 1MRK 506 335-UUS A Impedance protection BLOCK startPhG operatePhG tPEZx & ³1 tPPZx startPhPh & ³1 operatePhPh TimerSelZx Switch Timers separated FALSE ³1 Timers linked internalCommonStart Internal start phSelStart Start from PhSel externalCommonStart External start ANSI11000270-3-en.vsd ANSI11000270 V3 EN Figure 50: Zone tripping logic •...
  • Page 131: Technical Data

    Section 6 1MRK 506 335-UUS A Impedance protection 6.1.7 Technical data Table 29: ZQMPDIS (21) Technical data Function Range or value Accuracy Number of zones 5 with selectable direction Minimum operate current, phase- (10-30)% of IBase ± 2,0 % of I to-phase and phase-to-ground Positive sequence impedance (0.005 - 3000.000) Ω/...
  • Page 132: Phase Selection With Load Encroachment, Quadrilateral Characteristic Fdpspdis (21)

    Section 6 1MRK 506 335-UUS A Impedance protection Table 30: ZQMPDIS (21)Technical data Function Range or value Accuracy Number of zones with selectable 5 with selectable direction directions Minimum operate current, phase- (10–30)% of I ± 2.0% of I Base to-phase and phase-to-earth Positive sequence impedance (0.005–3000.000) W/phase...
  • Page 133: Functionality

    Section 6 1MRK 506 335-UUS A Impedance protection 6.2.2 Functionality The operation of transmission networks today is in many cases close to the stability limit. Due to environmental considerations, the rate of expansion and reinforcement of the power system is reduced, for example, difficulties to get permission to build new power lines.
  • Page 134: Signals

    Section 6 1MRK 506 335-UUS A Impedance protection 6.2.4 Signals Table 31: FDPSPDIS Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function DIRCND INTEGER External directional condition...
  • Page 135: Settings

    Section 6 1MRK 506 335-UUS A Impedance protection 6.2.5 Settings Table 33: FDPSPDIS Group settings (basic) Name Values (Range) Unit Step Default Description 21 enable Disabled Enabled Operation of impedance based measurement Enabled 50/51 enable Disabled Disabled Operation of current based measurement Enabled 3I0BLK_PP 10 - 100...
  • Page 136: Operation Principle

    Section 6 1MRK 506 335-UUS A Impedance protection Table 35: FDPSPDIS Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 6.2.6 Operation principle The basic impedance algorithm for the operation of the phase selection measuring elements is the same as for the distance zone measuring function.
  • Page 137 Section 6 1MRK 506 335-UUS A Impedance protection The DLECND output is non-directional. The directionality is determined by the distance zones directional function (ZDNRDIR). There are outputs from FDPSPDIS (21) that indicate whether a pickup is in forward or reverse direction or non-directional, for example FWD_A, REV_A and NDIR_A.
  • Page 138: Phase-To-Ground Fault

    Section 6 1MRK 506 335-UUS A Impedance protection 6.2.6.1 Phase-to-ground fault Index PHS in images and equations reference settings for Phase selection with load encroachment function FDPSPDIS (21). VA B C ( , ) IA B C ( , ) (Equation 25) EQUATION1554 V1 EN where:...
  • Page 139 Section 6 1MRK 506 335-UUS A Impedance protection X (ohm/loop) Kr·(X1+XN) RFItRevPG RFItFwdPG X1+XN 60 deg RFItFwdPG R (Ohm/loop) RFItRevPG 60 deg X1+XN tan(60 deg) RFItFwdPG RFItRevPG Kr·(X1+XN) en06000396_ansi.vsd ANSI06000396 V1 EN Figure 53: Characteristic of FDPSPDIS (21) for phase-to-ground fault (setting parameters in italic), ohm/loop domain (directional lines are drawn as "line-dot-dot-line") Besides this, the 3I...
  • Page 140: Phase-To-Phase Fault

    Section 6 1MRK 506 335-UUS A Impedance protection 6.2.6.2 Phase-to-phase fault For a phase-to-phase fault, the measured impedance by FDPSPDIS (21) will be according to equation 30. Vm Vn ZPHS - × (Equation 30) EQUATION1813-ANSI V1 EN Vm is the leading phase voltage, Vn the lagging phase voltage and In the phase current in the lagging phase n.
  • Page 141: Three-Phase Faults

    Section 6 1MRK 506 335-UUS A Impedance protection < IMinPUPG (Equation 31) EQUATION2109-ANSI V1 EN INBlockPP < × (Equation 32) EQUATION2110-ANSI V1 EN where: IMinPUPG is the minimum operation current for ground measuring loops, 3I0BLK_PP is 3I limit for blocking phase-to-phase measuring loop and Iphmax is maximal magnitude of the phase currents.
  • Page 142: Load Encroachment

    Section 6 1MRK 506 335-UUS A Impedance protection X (ohm/phase) × 4 X1 90 deg 0.5·RFltFwdPP·K3 X1·K3 × 2 RFltFwdPP R (ohm/phase) 0.5·RFltRevPP·K3 30 deg ANSI05000671-4-en.vsd ANSI05000671 V4 EN Figure 55: The characteristic of FDPSPDIS (21) for three-phase fault (setting parameters in italic) 6.2.6.4 Load encroachment...
  • Page 143 Section 6 1MRK 506 335-UUS A Impedance protection RLdFwd LdAngle LdAngle LdAngle LdAngle RLdRev en05000196_ansi.vsd ANSI05000196 V1 EN Figure 56: Characteristic of load encroachment function The influence of load encroachment function on the operation characteristic is dependent on the chosen operation mode of FDPSPDIS (21) function. When output signal STCNDZI is selected, the characteristic for FDPSPDIS (21) (and also zone measurement depending on settings) will be reduced by the load encroachment characteristic (see figure 57, left illustration).
  • Page 144 Section 6 1MRK 506 335-UUS A Impedance protection GUID-15250C2D-D7FE-46A4-8392-8A3E5D5AAACE---ANSI V1 EN Figure 57: Difference in operating characteristic depending on operation mode when load encroachment is activated When FDPSPDIS (21) is set to operate together with a distance measuring zone the resultant operate characteristic could look like in figure 58.
  • Page 145 Section 6 1MRK 506 335-UUS A Impedance protection "Phase selection" "quadrilateral" zone Distance measuring zone Load encroachment characteristic Directional line en05000673.vsd IEC05000673 V1 EN Figure 58: Operating characteristic in forward direction when load encroachment is activated Figure is valid for phase-to-ground. During a three-phase fault, or load, when the quadrilateral phase-to-phase characteristic is subject to enlargement and rotation the operate area is transformed according to figure 59.
  • Page 146 Section 6 1MRK 506 335-UUS A Impedance protection phase Phase selection ”Quadrilateral” zone Distance measuring zone phase IEC09000049-1-en.vsd IEC09000049 V1 EN Figure 59: Operating characteristic for FDPSPDIS (21) in forward direction for three-phase fault, ohm/phase domain The result from rotation of the load characteristic at a fault between two phases is presented in fig 60.
  • Page 147: Minimum Operate Currents

    Section 6 1MRK 506 335-UUS A Impedance protection IEC08000437.vsd IEC08000437 V1 EN Figure 60: Rotation of load characteristic for a fault between two phases There is a gain in selectivity by using the same measurement as for the quadrilateral characteristic since not all phase-to-phase loops will be fully affected by a fault between two phases.
  • Page 148: Simplified Logic Diagrams

    Section 6 1MRK 506 335-UUS A Impedance protection 6.2.6.6 Simplified logic diagrams Figure presents schematically the creation of the phase-to-phase and phase-to-ground operating conditions. Consider only the corresponding part of measuring and logic circuits, when only a phase-to-ground or phase-to-phase measurement is available within the IED.
  • Page 149 Section 6 1MRK 506 335-UUS A Impedance protection INDIR_A INDIR_B INDIR_3 PHSEL_G 15 ms IRELPG PHSEL_A 15 ms PHSEL_B 15 ms ZMAB PHSEL_C 15 ms ZMBC3 INDIR_AB INDIR_BC ZMCA INDIR_CA IRELPP PHSEL_PP 15 ms ANSI00000545-3-en.vsd ANSI00000545 V3 EN Figure 62: Composition on non-directional phase selection signals Composition of the directional (forward and reverse) phase selective signals is presented schematically in figure...
  • Page 150 Section 6 1MRK 506 335-UUS A Impedance protection INDIR_A DRV_A INDIR_AB REV_A DRV_AB 15 ms INDIR_CA DRV_CA REV_G INDIR_B 15 ms DRV_B INDIR_AB REV_B 15 ms INDIR_BC INDIR_A INDIR_B DRV_BC INDIR_C STCNDZI Bool to INDIR_C INDIR_AB integer INDIR_BC DRV_C INDIR_CA INDIR_BC REV_C 15 ms...
  • Page 151 Section 6 1MRK 506 335-UUS A Impedance protection INDIR_A FWD_IPH DFW_A 15 ms 15 ms INDIR_AB FWD_A DFW_AB 15 ms INDIR_CA DFW_CA FWD_G INDIR_B 15 ms DFW_B FWD_B INDIR_AB 15 ms FWD_2PH INDIR_BC 15 ms 15 ms DFW_BC INDIR_C DFW_C FWD_C INDIR_BC 15 ms...
  • Page 152 Section 6 1MRK 506 335-UUS A Impedance protection TimerPP=Disabled 0-tPP TRIP TimerPE=Disabled 0-tPG NDIR_ FWD_PP REV_PP PICKUP NDIR_G FWD_G REV_G ANSI10000187-2-en.vsd ANSI10000187 V2 EN Figure 65: TRIP and PICKUP signal logic Technical manual...
  • Page 153: Technical Data

    Section 6 1MRK 506 335-UUS A Impedance protection 6.2.7 Technical data Table 36: (21) Technical data Function Range or value Accuracy Minimum operate current (5-500)% of IBase ± 1.0% of I Reactive reach, positive (0.50–3000.00) Ω/phase ± 2.0% static accuracy sequence Conditions: Voltage range: (0.1-1.1) x V...
  • Page 154: Function Block

    Section 6 1MRK 506 335-UUS A Impedance protection 6.3.3 Function block FMPSPDIS I3P* PICKUP V3P* PU_A BLOCK PU_B ZPICK UP PU_C TR3PH PHG_FLT PHSCND DLECND PU_BLF ANSI09000154-1-en.vsd ANSI09000154 V1 EN Figure 66: FMPSPDIS (21) function block 6.3.4 Signals Table 37: FMPSPDIS Input signals Name Type...
  • Page 155: Settings

    Section 6 1MRK 506 335-UUS A Impedance protection 6.3.5 Settings Table 39: FMPSPDIS Group settings (basic) Name Values (Range) Unit Step Default Description IMaxLoad 10 - 5000 Maximum load for identification of three phase fault in % of IBase 1.00 - 3000.00 ohm/p 0.01 80.00...
  • Page 156 Section 6 1MRK 506 335-UUS A Impedance protection A high speed delta based current phase selector A high speed delta based voltage phase selector A symmetrical components based phase selector Fault evaluation and selection logic A load encroachment logic A blinder logic The total function can be blocked by activating the input BLOCK.
  • Page 157 Section 6 1MRK 506 335-UUS A Impedance protection value. Both voltages and currents are filtered out and evaluated. The condition for fault type classification for the voltages and currents can be expressed as: å D VA VB FaultType Max IA IB (Equation 33) EQUATION1808-ANSI V1 EN å...
  • Page 158 Section 6 1MRK 506 335-UUS A Impedance protection Symmetrical component based phase selector The symmetrical component phase selector uses preprocessed calculated sequence voltages and currents as inputs. It also uses sampled values of the phase currents. All the symmetrical quantities mentioned further in this section are with reference to phase A. The function is made up of four main parts: Detection of the presence of ground fault A phase-to-phase logic block based on V...
  • Page 159 Section 6 1MRK 506 335-UUS A Impedance protection <0.1 · IBase <maxIph · INRelPG where: is the magnitude of the zero sequence voltage is the magnitude of the positive sequence voltage is the magnitude of the negative sequence voltage maxIph is the maximal phase current Phase-to-phase fault detection The detection of phase-to-phase fault is performed by evaluation of the angle difference...
  • Page 160 Section 6 1MRK 506 335-UUS A Impedance protection The positive sequence voltage V A in figure above is reference. If there is a three-phase fault, there will not be any release of the individual phase signals, even if the general conditions for V and V are fulfilled.
  • Page 161 Section 6 1MRK 506 335-UUS A Impedance protection Forward 20° 200° Reverse en06000385.vsd IEC06000385 V1 EN Figure 69: Directional element used to release the measured angle between V The input radians are summarized with an offset angle and the result evaluated. If the angle is within the boundaries for a specific sector, the phase indication for that sector will be active see figure 68.
  • Page 162 Section 6 1MRK 506 335-UUS A Impedance protection introduced so that the fault sectors will have the same angle boarders as for condition 1. If the calculated angle between V and V lies within one sector, the corresponding phase for that sector will be activated. The condition 2 is released if both the following conditions are fulfilled: |>V2MinOp |>V1MinOp...
  • Page 163 Section 6 1MRK 506 335-UUS A Impedance protection Three-phase fault detection Unless it has been categorized as a single or two-phase fault, the function classifies it as a three-phase fault if the following conditions are fulfilled: |V1Level |>I1LowLevel |>IMaxLoad where: | and |I are the positive sequence voltage and current magnitude V1Level ,...
  • Page 164 Section 6 1MRK 506 335-UUS A Impedance protection a>b FaultPriority DeltaIA then c=a Adaptive release dependent on result else c=a from Delta logic DeltaVA Sequence based function a<b then c=b AB fault else c=a AG fault 3 Phase fault PU_A &...
  • Page 165 Section 6 1MRK 506 335-UUS A Impedance protection The start operations from respective loop are binary coded into one word and provides an output signal PLECND. Operation area Operation area LdAngle LdAngle LdAngle LdAngle Operation area No operation area No operation area en06000414_ansi.vsd ANSI06000414 V1 EN Figure 72:...
  • Page 166: Technical Data

    Section 6 1MRK 506 335-UUS A Impedance protection -ABG -BCG -CAG -ABCG The signal DLECND must be connected to the input LDCND for selected mho impedance measuring zones ZMOPDIS. In case several loops have to be released at the same time, the value is the sum of the values for all loops, like the value for three-phase fault is the sum of the phase-to-phase loop values (8+16+32=56).
  • Page 167: Functionality

    Section 6 1MRK 506 335-UUS A Impedance protection 6.4.2 Functionality The evaluation of the direction to the fault is made in the directional element ZDNRDIR (21D) for the quadrilateral and mho characteristic distance protections ZQMPDIS (21). 6.4.3 Function block ZDARDIR (21D) I3P* FWD_G V3P*...
  • Page 168: Settings

    Section 6 1MRK 506 335-UUS A Impedance protection 6.4.5 Settings Table 45: ZDARDIR (21D) Group settings (basic) Name Values (Range) Unit Step Default Description PolMode -3U0 -3U0 Polarization quantity for opt dir function for P-G faults IPol Dual -3U0Comp -V2comp AngleRCA -90 - 90 Characteristic relay angle (= MTA or base...
  • Page 169 Section 6 1MRK 506 335-UUS A Impedance protection There are however some situations that can cause security problems like reverse phase to phase faults and double phase-to-ground faults during high load periods. To solve these, additional directional element is used. For phase-to-ground faults, directional elements using sequence components are very reliable for directional discrimination.
  • Page 170 Section 6 1MRK 506 335-UUS A Impedance protection The principle of zero-sequence voltage polarization with zero-sequence current compensation is described in figure 75. The same also applies for the negative-sequence function. In some applications the zero and/or negative source impedance may be so small compared to the protected line impedance, that sufficient polarizing voltage cannot be produced for far line end faults.
  • Page 171: Technical Data

    Section 6 1MRK 506 335-UUS A Impedance protection 6.4.7 Technical data Table 48: ZDARDIR (21D) technical data Function Range or value Accuracy Mimimum operating current, I (5 – 200)% of IBase < ±1.0% of I , for I<I ±1.0% of I, for I>I Minimum polarizing current, IPol (5 –...
  • Page 172: Signals

    Section 6 1MRK 506 335-UUS A Impedance protection 6.5.4 Signals Table 49: ZDNRDIR (21D) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL Table 50: ZDNRDIR (21D) Output signals Name Type...
  • Page 173: Monitored Data

    Section 6 1MRK 506 335-UUS A Impedance protection 6.5.6 Monitored data Table 53: ZDNRDIR (21D) Monitored data Name Type Values (Range) Unit Description Aph_R REAL Resistance in phase A Aph_X REAL Reactance in phase A Bph_R REAL Resistance in phase B Bph_X REAL Reactance in phase B...
  • Page 174 Section 6 1MRK 506 335-UUS A Impedance protection Positive sequence phase voltage in phase A V1AM Positive sequence memorized phase voltage in phase A Phase current in phase A V1AB Voltage difference between phase A and B (B lagging A) V1ABM Memorized voltage difference between phase A and B (B lagging A) Current difference between phase A and B (B lagging A)
  • Page 175 Section 6 1MRK 506 335-UUS A Impedance protection AngNegRes AngDir en05000722_ansi.vsd ANSI05000722 V1 EN Figure 79: Setting angles for discrimination of forward and reverse fault for quadrilateral characteristic The reverse directional characteristic is equal to the forward characteristic rotated by 180 degrees.
  • Page 176: Phase Preference Logic Pplphiz

    Section 6 1MRK 506 335-UUS A Impedance protection • If the fault has caused tripping, the trip endures. • If the fault was detected in the reverse direction, the measuring element in the reverse direction remains in operation. • If the current decreases below the minimum operating value, the memory resets and no directional indications will be given until the positive sequence voltage exceeds 10% of its rated value.
  • Page 177: Signals

    Section 6 1MRK 506 335-UUS A Impedance protection 6.6.4 Signals Table 54: PPLPHIZ Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function RELAG BOOLEAN Release condition for the A to ground loop...
  • Page 178: Operation Principle

    Section 6 1MRK 506 335-UUS A Impedance protection Table 57: PPLPHIZ Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 6.6.6 Operation principle 6.6.6.1 Operation principle Phase preference logic PPLPHIZ has 10 operation modes, which can be set by the parameter OperMode.
  • Page 179 Section 6 1MRK 506 335-UUS A Impedance protection The voltage and current discrimination part gives phase segregated pickup signals if the respective measured phase voltage is below the setting parameter PU27PN at the same time as the zero sequence voltage is above the setting parameter 3V0Pickup. If there is a pickup in any phase the PICKUP output signal will be activated.
  • Page 180: Technical Data

    Section 6 1MRK 506 335-UUS A Impedance protection VCVA PICKUP Voltage and Current Discrimination PU27PN PU27PP Pickup_N Detect Cross- Country fault 3VOPU OperMode ZREL RELAG Phase Preference Evaluation RELBG PHSEL BLOCK ANSI10000189-1-en.vsd ANSI10000189 V1 EN Figure 81: Simplified block diagram for Phase preference logic 6.6.7 Technical data Table 59:...
  • Page 181: Power Swing Detection Zmrpsb (68)

    Section 6 1MRK 506 335-UUS A Impedance protection Power swing detection ZMRPSB (68) 6.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Power swing detection ZMRPSB Zpsb SYMBOL-EE V1 EN 6.7.2 Functionality Power swings may occur after disconnection of heavy loads, upon severe fault clearing or after tripping of big generation plants.
  • Page 182: Settings

    Section 6 1MRK 506 335-UUS A Impedance protection Name Type Default Description BLKI01 BOOLEAN Block inhibit of start output for slow swing condition BLKI02 BOOLEAN Block inhibit of start output for subsequent residual current detect I0CHECK BOOLEAN Residual current (3I0) detection to inhibit start output EXTERNAL BOOLEAN Input for external detection of power swing...
  • Page 183: Operation Principle

    Section 6 1MRK 506 335-UUS A Impedance protection Table 63: ZMRPSB (68) Group settings (advanced) Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.045 Timer for detection of initial power swing 0.000 - 60.000 0.001 0.015 Timer for detection of subsequent power swings 0.000 - 60.000 0.001...
  • Page 184 Section 6 1MRK 506 335-UUS A Impedance protection R1LIn X1OutFw X1InFw R1FInRv R1FInFw LdAngle LdAngle RLdInRv RLdInFw RLdOutFw RLdOutRv X1InRv X1OutRv ANSI05000175-2-en.vsd ANSI05000175 V2 EN Figure 83: Operating characteristic for ZMRPSB (68) function (setting parameters in italic) The impedance measurement within ZMRPSB (68) function is performed by solving equation and equation (Typical equations are for phase A, similar equations are...
  • Page 185: Resistive Reach In Forward Direction

    Section 6 1MRK 506 335-UUS A Impedance protection 6.7.6.1 Resistive reach in forward direction To avoid load encroachment, the resistive reach is limited in forward direction by setting the parameter RLdOutFw which is the outer resistive load boundary value while the inner resistive boundary is calculated according to equation 39.
  • Page 186: Reactive Reach In Forward And Reverse Direction

    Section 6 1MRK 506 335-UUS A Impedance protection From the setting parameter RLdOutRv and the calculated value RLdInRv, a distance between the inner and outer boundary, DRv, is calculated. This value is valid for R direction in second and third quadrant and for X direction in third and fourth quadrant. The inner resistive characteristic in the second quadrant outside the load encroachment part corresponds to the setting parameter R1FInRv for the inner boundary.
  • Page 187 Section 6 1MRK 506 335-UUS A Impedance protection The tP1 timer in figure serve as detection of initial power swings, which are usually not as fast as the later swings are. The tP2 timer become activated for the detection of the consecutive swings, if the measured impedance exit the operate area and returns within the time delay, set on the tW waiting timer.
  • Page 188: Operating And Inhibit Conditions

    Section 6 1MRK 506 335-UUS A Impedance protection ZOUT_A ZOUT ZOUT_B ZIN_A ZOUT_C ZIN_B ZIN_C I0CHECK 10 ms BLK_I0 INHIBIT -loop 0-tR2 BLK_SS BLOCK -loop DET 1of3 - int DET 2of3 - int 0-tH EXT_PSD PICKUP ANSI09000223-3-en.vsd ANSI09000223 V3 EN Figure 85: Simplified block diagram for ZMRPSB (68) function 6.7.6.5...
  • Page 189: Technical Data

    Section 6 1MRK 506 335-UUS A Impedance protection is longer than the time delay set on tR2 timer. It is possible to disable this condition by connecting the logical 1 signal to the BLK_SS functional input. • The INHIBIT internal signal is activated after the time delay, set on tR1 timer, if an ground-fault appears during the power swing (input IOCHECK is high) and the power swing has been detected before the ground-fault (activation of the signal I0CHECK).
  • Page 190: Function Block

    Section 6 1MRK 506 335-UUS A Impedance protection 6.8.3 Function block ZCVPSOF I3P* TRIP V3P* BLOCK ZACC ANSI09000057-1-en.vsd ANSI09000057 V1 EN Figure 86: ZCVPSOF Function block 6.8.4 Signals Table 66: ZCVPSOF Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs...
  • Page 191: Operation Principle

    Section 6 1MRK 506 335-UUS A Impedance protection Name Values (Range) Unit Step Default Description UVPickup 1 - 100 Voltage level for detection of dead line in % of VBase tDuration 0.000 - 60.000 0.001 0.020 Time delay for UI detection tSOTF 0.000 - 60.000 0.001...
  • Page 192 Section 6 1MRK 506 335-UUS A Impedance protection ZCVPSOF can be activated externally from input BC and thus setting AutoInit is bypassed. The function is released during a settable time tSOTF. The function can be blocked by activating the input BLOCK. BLOCK TRIP AutiInit=Enabled...
  • Page 193: Technical Data

    Section 6 1MRK 506 335-UUS A Impedance protection 6.8.7 Technical data Table 70: ZCVPSOF technical data Parameter Range or value Accuracy Operate voltage, detection of dead line (1–100)% of ± 0.5% of V VBase Operate current, detection of dead line (1–100)% of ±...
  • Page 195: Section 7 Current Protection

    Section 7 1MRK 506 335-UUS A Current protection Section 7 Current protection Instantaneous phase overcurrent protection 3-phase output PHPIOC (50) 7.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Instantaneous phase overcurrent PHPIOC protection 3-phase output 3I>>...
  • Page 196: Settings

    Section 7 1MRK 506 335-UUS A Current protection Table 72: PHPIOC (50) Output signals Name Type Description TRIP BOOLEAN Common trip signal 7.1.5 Settings Table 73: PHPIOC (50) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled...
  • Page 197: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection 7.1.8 Technical data Table 76: PHPIOC (50) technical data Function Range or value Accuracy Operate current (5-2500)% of lBase ± 1.0% of I at I £ I ± 1.0% of I at I > I Reset ratio >...
  • Page 198: Function Block

    Section 7 1MRK 506 335-UUS A Current protection 7.2.3 Function block SPTPIOC (50) I3P* TRIP BLOCK TR_A TR_B TR_C ANSI10000215-1-en.vsd ANSI10000215 V1 EN Figure 89: SPTPIOC 50 function block 7.2.4 Signals Table 77: SPTPIOC (50) Input signals Name Type Default Description GROUP Three phase group signal for current inputs...
  • Page 199: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection 7.2.6 Monitored Data Table 81: SPTPIOC (50) Monitored data Name Type Values (Range) Unit Description REAL Current in phase A REAL Current in phase B REAL Current in phase C 7.2.7 Principle of operation The sampled analog phase currents are pre-processed in a discrete Fourier filter (DFT) block.
  • Page 200: Identification

    Section 7 1MRK 506 335-UUS A Current protection Four step phase overcurrent protection 3-phase output OC4PTOC (51/67) 7.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Four step phase overcurrent protection OC4PTOC 51/67 3I> 3-phase output TOC-REVA V1 EN 7.3.2 Functionality...
  • Page 201: Function Block

    Section 7 1MRK 506 335-UUS A Current protection 7.3.3 Function block OC4PTOC (51_67) I3P* TRIP V3P* TRST1 BLOCK TRST2 BLK1 TRST3 BLK2 TRST4 BLK3 PICKUP BLK4 PU_ST1 PU_ST2 PU_ST3 PU_ST4 PU_A PU_B PU_C 2NDHARM ANSI08000002-2-en.vsd ANSI08000002 V2 EN Figure 90: OC4PTOC (51/67) function block 7.3.4 Signals...
  • Page 202: Settings

    Section 7 1MRK 506 335-UUS A Current protection Name Type Description BOOLEAN Pick up signal from step 1 BOOLEAN Pick up signal from step 2 BOOLEAN Pickup signal step 3 BOOLEAN Pickup signal step 4 STL1 BOOLEAN Pickup signal from phase A STL2 BOOLEAN Pickup signal from phase B...
  • Page 203 Section 7 1MRK 506 335-UUS A Current protection Name Values (Range) Unit Step Default Description DirMode2 Disabled Non-directional Directional mode of step 2 off / non-directional / Non-directional forward / reverse Forward Reverse I2> 5 - 2500 Phase current operate level for step 2 in % of IBase 0.000 - 60.000 0.001...
  • Page 204: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection Table 86: OC4PTOC (51_67) Group settings (advanced) Name Values (Range) Unit Step Default Description HarmRestrain Disabled Disabled Enable block from harmonic restrain Enabled 2ndHarmStab 5 - 100 %IFund Pickup of second harm restraint in % of Fundamental HarmRestrain1 Disabled...
  • Page 205 Section 7 1MRK 506 335-UUS A Current protection • The direction element • The harmonic Restraint Blocking function • The four step over current function • The mode selection If VT inputs are not available or not connected, setting parameter DirModeSelx shall be left to default value, Non-directional.
  • Page 206 Section 7 1MRK 506 335-UUS A Current protection the type of the measurement used for all overcurrent stages. It is possible to select either discrete Fourier filter (DFT) or true RMS filter (RMS). If DFT option is selected then only the RMS value of the fundamental frequency components of each phase current is derived.
  • Page 207 Section 7 1MRK 506 335-UUS A Current protection Phase-ground short circuit: dir A (Equation 44) ANSIEQUATION1452 V1 EN ref B dir B (Equation 45) ANSIEQUATION1453 V1 EN ref C dir C (Equation 46) ANSIEQUATION1454 V1 EN Technical manual...
  • Page 208 Section 7 1MRK 506 335-UUS A Current protection ANSI09000636-1-en.vsd ANSI09000636 V1 EN Figure 92: Directional characteristic of the phase overcurrent protection 1 RCA = Relay characteristic angle 55° 2 ROA = Relay operating angle 80° 3 Reverse 4 Forward If no blockings are given the pickup signals will start the timers of the step. The time characteristic for step 1 and 4 can be chosen as definite time delay or inverse time characteristic.
  • Page 209: Second Harmonic Blocking Element

    Section 7 1MRK 506 335-UUS A Current protection Characteristx=DefTime 0-tx a>b Pickupx 0-txMin Inve rse Characteristx=Inve rse STAGE x_DIR_Int DirModeSelx=Disa bled DirModeSelx=Non-dire ctional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI12000008-3-en.vsd ANSI12000008-3-en.vsd ANSI12000008 V3 EN Figure 93: Simplified logic diagram for OC4PTOC 7.3.8 Second harmonic blocking element A harmonic restrain of the Four step overcurrent protection function OC4PTOC 51_67 can be chosen.
  • Page 210: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection 7.3.9 Technical data Table 89: OC4PTOC (51/67) technical data Function Setting range Accuracy lBase Operate current (5-2500)% of ± 1.0% of I at I ≤ I ± 1.0% of I at I > I lBase Reset ratio >...
  • Page 211: Functionality

    Section 7 1MRK 506 335-UUS A Current protection 7.4.2 Functionality The four step phase overcurrent function for single pole tripping OC4SPTOC (51_67) has an inverse or definite time delay independent for each step separately. All IEC and ANSI time delayed characteristics are available. The directional function is voltage polarized with memory.
  • Page 212 Section 7 1MRK 506 335-UUS A Current protection Name Type Default Description BLKST2 BOOLEAN Block of step 2 BLKST3 BOOLEAN Block of step 3 BLKST4 BOOLEAN Block of step 4 Table 91: OC4SPTOC (51_67) Output signals Name Type Description TRIP BOOLEAN Common trip signal BOOLEAN...
  • Page 213: Settings

    Section 7 1MRK 506 335-UUS A Current protection 7.4.5 Settings Table 92: OC4SPTOC (51_67) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled DirMode1 Disabled Non-directional Directional mode of step 1 off / non-directional / Non-directional forward / reverse Forward...
  • Page 214 Section 7 1MRK 506 335-UUS A Current protection Name Values (Range) Unit Step Default Description DirMode4 Disabled Non-directional Directional mode of step 4 off / non-directional / Non-directional forward / reverse Forward Reverse Characterist4 ANSI Ext. inv. ANSI Def. Time Selection of time delay curve type for step 4 ANSI Very inv.
  • Page 215: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection Table 94: OC4SPTOC (51_67) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups MeasType Selection between DFT and RMS measurement 7.4.6 Monitored data...
  • Page 216 Section 7 1MRK 506 335-UUS A Current protection The sampled analog phase currents are processed in a pre-processing function block. Using a parameter setting MeasType within the general settings for the Four step phase overcurrent protection phase segregated output OC4SPTOC (51_67) function, it is possible to select the type of the measurement used for all overcurrent stages.
  • Page 217 Section 7 1MRK 506 335-UUS A Current protection Phase-ground short circuit: ref_A dir_A ref_B dir_B ref_C dirC ANSI09000636-1-en.vsd ANSI09000636 V1 EN Figure 96: Directional characteristic of the phase overcurrent protection RCA = Relay characteristic angle 55° ROA = Relay operating angle 80° Reverse Forward If no blockings are given, the pickup signals will start the timers of the step.
  • Page 218: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection (51_67) can be blocked from the binary input BLOCK. The binary input BLKx (x=1, 2, 3 or 4) blocks the operation of respective step. 7.4.8 Technical data Table 96: OC4SPTOC (51_67) technical data Function Setting range Accuracy...
  • Page 219: Identification

    Section 7 1MRK 506 335-UUS A Current protection 7.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Instantaneous residual overcurrent EFPIOC protection IN>> IEF V1 EN 7.5.2 Functionality The Instantaneous residual overcurrent protection EFPIOC (50N) has a low transient overreach and short tripping times to allow the use for instantaneous ground-fault protection, with the reach limited to less than the typical eighty percent of the line at minimum source impedance.
  • Page 220: Settings

    Section 7 1MRK 506 335-UUS A Current protection 7.5.5 Settings Table 99: EFPIOC (50N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled Pickup 1 - 2500 Operate residual current level in % of IBase Table 100: EFPIOC (50N) Non group settings (basic) Name...
  • Page 221: Four Step Residual Overcurrent Protection, Zero, Negative Sequence Direction Ef4Ptoc (51N/67N)

    Section 7 1MRK 506 335-UUS A Current protection Function Range or value Accuracy Critical impulse time 10 ms typically at 0 to 2 x I Operate time 10 ms typically at 0 to 5x I Reset time 40 ms typically at 5 to 0x I Critical impulse time 2 ms typically at 0 to 5 x I Dynamic overreach...
  • Page 222: Function Block

    Section 7 1MRK 506 335-UUS A Current protection Other setting combinations are possible, but not recommended. Second harmonic blocking level can be set for the function and can be used to block each step individually. EF4PTOC (51N/67N) can be used as main protection for phase-to-ground faults. EF4PTOC (51N/67N) can also be used to provide a system back-up for example, in the case of the primary protection being out of service due to communication or voltage transformer circuit failure.
  • Page 223: Settings

    Section 7 1MRK 506 335-UUS A Current protection Name Type Default Description I3PDIR GROUP Three phase group signal for operating directional SIGNAL inputs BLOCK BOOLEAN Block of function BLKST1 BOOLEAN Block of step 1 (start and trip) BLKST2 BOOLEAN Block of step 2 (start and trip) BLKST3 BOOLEAN Block of step 3 (start and trip)
  • Page 224 Section 7 1MRK 506 335-UUS A Current protection Name Values (Range) Unit Step Default Description IPolMin 2 - 100 Minimum current level for polarization (IN or I2) in % of IBase RPol 0.50 - 1000.00 0.01 5.00 Real part of source Z to be used for current polarisation XPol 0.50 - 3000.00...
  • Page 225 Section 7 1MRK 506 335-UUS A Current protection Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.400 Independent (definite) time delay of step 2 IMin2 1 - 10000 Minimum operate current for step 2 in % of IBase HarmRestrain2 Enable block of step 2 from harmonic restrain...
  • Page 226: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection Table 106: EF4PTOC Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups SeqTypeUPol ZeroSeq ZeroSeq Choice of measurand for polarizing voltage NegSeq SeqTypeIPol ZeroSeq...
  • Page 227: Operating Quantity Within The Function

    Section 7 1MRK 506 335-UUS A Current protection 7.6.7.1 Operating quantity within the function If the function is set to measure zero sequence, it uses Residual Current (3I ) for its operating quantity. The residual current can be: directly measured (when a dedicated CT input of the IED is connected in PCM600 to the fourth analog input of the pre-processing block connected to EF4PTOC (51N/ 67N) function input I3P).
  • Page 228: Internal Polarizing

    Section 7 1MRK 506 335-UUS A Current protection 7.6.7.2 Internal polarizing A polarizing quantity is used within the protection in order to determine the direction to the ground fault (Forward/Reverse). The function can be set to use voltage polarizing, current polarizing or dual polarizing. Voltage polarizing When voltage polarizing is selected the protection will use either the residual voltage 3V or the negative sequence voltage V...
  • Page 229 Section 7 1MRK 506 335-UUS A Current protection where: VA, VB, VC are fundamental frequency phasors of three individual phase voltages. alpha unit phasor with an angle of 120 degrees. The polarizing phasor is used together with the phasor of the operating directional current, in order to determine the direction to the ground fault (Forward/Reverse).
  • Page 230 Section 7 1MRK 506 335-UUS A Current protection The negative sequence current can be calculated from the three-phase current input within the IED by using the pre-processing block. The pre-processing block will calculate the negative sequence current from the three inputs into the pre-processing block by using the following formula: ×...
  • Page 231: External Polarizing For Ground-Fault Function

    Section 7 1MRK 506 335-UUS A Current protection 7.6.7.3 External polarizing for ground-fault function The individual steps within the protection can be set as non-directional. When this setting is selected it is then possible via function binary input BLKn(where x indicates the relevant step within the protection) to provide external directional control (that is, torque control) by for example using one of the following functions if available in the IED: Distance protection directional function.
  • Page 232: Directional Supervision Element With Integrated Directional Comparison Function

    Section 7 1MRK 506 335-UUS A Current protection available. For the complete list of available inverse curves please refer to section "Inverse time characteristics". • Time delay related settings. By these parameter settings the properties like definite time delay, minimum operating time for inverse curves and reset time delay are defined.
  • Page 233 Section 7 1MRK 506 335-UUS A Current protection polMethod. The polarizing quantity will be selected by the function in one of the following three ways: When polMethod = Voltage, VPol will be used as polarizing quantity. When polMethod = Current, IPol will be used as polarizing quantity. WhenpolMethod = Dual, VPol + IPol ·...
  • Page 234 Section 7 1MRK 506 335-UUS A Current protection BLKTR Characteristx=DefTime 0-tx a>b Pickupx PU_STx 0-txMin BLKx BLOCK Inverse Characteristx=Inverse STAGEx_DIR_Int DirModeSelx=Disabled DirModeSelx=Non-directional DirModeSelx=Forward FORWARD_Int DirModeSelx=Reverse REVERSE_Int ANSI11000281-1-en.vsd ANSI11000281-1-en.vsd ANSI11000281 V1 EN Figure 101: Operating characteristic for ground-fault directional element using the zero sequence components Technical manual...
  • Page 235 Section 7 1MRK 506 335-UUS A Current protection Operating area PUREV 0.6 * IDirPU Characteristic for reverse release of measuring steps -RCA -85 deg Characteristic for PUREV 40% of RCA +85 deg IDIR 65 deg pol = - -RCA +85 deg RCA -85 deg Characteristic for forward release of measuring steps...
  • Page 236 Section 7 1MRK 506 335-UUS A Current protection PUFW=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than setting parameter IDirPU and directional supervision element detects fault in forward direction. PUREV=1 when operating quantity magnitude Iop x cos(φ - AngleRCA) is bigger than 60% of setting parameter IDirPU and directional supervision element detects fault in reverse direction.
  • Page 237: Second Harmonic Blocking Element

    Section 7 1MRK 506 335-UUS A Current protection 7.6.8 Second harmonic blocking element A harmonic restrain of the Four step residual overcurrent protection function EF4PTOC 51N_67N can be chosen. If the ratio of the 2nd harmonic component in relation to the fundamental frequency component in the residual current exceeds the pre-set level defined by parameter setting 2ndHarmStab.
  • Page 238: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection 7.6.9 Technical data Table 108: EF4PTOC (51N/67N) technical data Function Range or value Accuracy lBase Operate current (1-2500)% of ± 1.0% of I at I < I ± 1.0% of I at I > I Reset ratio >...
  • Page 239: Sensitive Directional Residual Overcurrent And Power Protection Sdepsde (67N)

    Section 7 1MRK 506 335-UUS A Current protection Sensitive directional residual overcurrent and power protection SDEPSDE (67N) 7.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Sensitive directional residual over SDEPSDE current and power protection 7.7.2 Functionality In isolated networks or in networks with high impedance grounding, the ground fault...
  • Page 240: Signals

    Section 7 1MRK 506 335-UUS A Current protection 7.7.4 Signals Table 109: SDEPSDE (67N) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLKUN BOOLEAN...
  • Page 241 Section 7 1MRK 506 335-UUS A Current protection Name Values (Range) Unit Step Default Description RCADir -179 - 180 Relay characteristic angle RCA RCAComp -10.0 - 10.0 Relay characteristic angle compensation ROADir 0 - 90 Relay open angle ROA used as release in phase mode INCosPhi>...
  • Page 242: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection Name Values (Range) Unit Step Default Description 0.000 - 60.000 0.001 0.100 Time delay for non-directional residual overvoltage INRel> 0.25 - 200.00 0.01 1.00 Residual release current for all directional modes, in % of IBase UNRel>...
  • Page 243 Section 7 1MRK 506 335-UUS A Current protection 7.7.7.2 Directional residual current protection measuring 3I ·cos φ φ is defined as the angle between the residual current 3I and the reference voltage. Vref = jRCADir , that is -3V rotated by the set characteristic angle RCADir (φ=ang(3I ang(V ) ).
  • Page 244 Section 7 1MRK 506 335-UUS A Current protection RCA = -90°, ROA = 90° ) – ang(V = ang(3I en06000649_ansi.vsd ANSI06000649 V1 EN Figure 107: RCADir set to -90° For trip, both the residual current 3I ·cos φ and the release voltage 3V , must be larger than the set levels: INCosPhiPU and VNRelPU.
  • Page 245 Section 7 1MRK 506 335-UUS A Current protection Operate area RCA = 0° ANSI06000650-2- en06000650_ansi.vsd ANSI06000650 V2 EN Figure 108: Characteristic with ROADir restriction The function indicates forward/reverse direction to the fault. Reverse direction is defined as 3I ·cos (φ + 180°) ≥ the set value. It is also possible to tilt the characteristic to compensate for current transformer angle error with a setting RCAComp as shown in the figure 109: Technical manual...
  • Page 246 Section 7 1MRK 506 335-UUS A Current protection Operate area RCA = 0° Instrument transformer RCAcomp angle error Characteristic after angle compensation (to prot) (prim) en06000651_ansi.vsd ANSI06000651 V1 EN Figure 109: Explanation of RCAComp 7.7.7.3 Directional residual power protection measuring 3I ·...
  • Page 247 Section 7 1MRK 506 335-UUS A Current protection This sub-function has the possibility of choice between definite time delay and inverse time delay. The inverse time delay is defined as: ϕ TDSN ⋅ ⋅ ⋅ reference cos ( ϕ ⋅ ⋅...
  • Page 248: Directional Functions

    Section 7 1MRK 506 335-UUS A Current protection The function indicate forward/reverse direction to the fault. Reverse direction is defined as φ is within the angle sector: RCADir + 180° ± ROADir This sub-function has definite time delay. 7.7.7.5 Directional functions For all the directional functions there are directional pickup signals PUFW: fault in the forward direction, and PUREV: Pickup in the reverse direction.
  • Page 249 Section 7 1MRK 506 335-UUS A Current protection When the function is activated binary output signal PUVN is activated. If the output signals are active after the set delay tVNNonDir TRIP and TRUN are activated. A simplified logical diagram of the total function is shown in figure 111. PUNDIN INNonDirPU 0 - t...
  • Page 250: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection 7.7.8 Technical data Table 114: SDEPSDE (67N) technical data Function Range or value Accuracy lBase Operate level for 3I ·cosj (0.25-200.00)% of ± 1.0% of I at I £ I directional residual ±...
  • Page 251: Time Delayed 2-Step Undercurrent Protection Uc2Ptuc (37)

    Section 7 1MRK 506 335-UUS A Current protection Function Range or value Accuracy Relay open angle ROA (0-90) degrees ± 2.0 degrees Operate time, non-directional 60 ms typically at 0 to 2 x I 60 ms typically at 0 to 2 x 1 residual over current Reset time, non-directional 65 ms typically at 2 to 0 x I...
  • Page 252: Function Block

    Section 7 1MRK 506 335-UUS A Current protection 7.8.3 Function block UC2PTUC (37) I3P* TRIP BLOCK TRST1 BLK1 TRST2 BLK2 PU_ST1 PU_ST2 ANSI09000124-1-en.vsd ANSI09000124 V1 EN Figure 112: UC2PTUC (37) function block 7.8.4 Signals Table 115: UC2PTUC (37) Input signals Name Type Default...
  • Page 253: Settings

    Section 7 1MRK 506 335-UUS A Current protection 7.8.5 Settings Table 117: UC2PTUC (37) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled I1Mode 1 out of 3 1 out of 3 Number of phases required to operate for step 2 out of 3 3 out of 3...
  • Page 254: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection lengths of these signals are controlled by a pulse timer, tPulse. The PICKUP and TRIP output signals can be reset instantaneous or time delay with the time setting, tReset1. An included blocking step is used to block UC2PTUC (37) when the power is shut off. The blocking step operates when all three phase currents are below the set value of IBlk.
  • Page 255: Functionality

    Section 7 1MRK 506 335-UUS A Current protection 7.9.2 Functionality The increasing utilizing of the power system closer to the thermal limits has generated a need of a thermal overload protection also for power lines. A thermal overload will often not be detected by other protection functions and the introduction of the thermal overload protection can allow the protected circuit to operate closer to the thermal limits.
  • Page 256: Signals

    Section 7 1MRK 506 335-UUS A Current protection 7.9.4 Signals Table 120: LFPTTR (26) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function AMBTEMP REAL Ambient temperature from external temperature sensor SENSFLT BOOLEAN Validity status of ambient temperature sensor...
  • Page 257: Settings

    Section 7 1MRK 506 335-UUS A Current protection Name Type Description TEMP REAL Calculated temperature of the device TEMPAMB REAL Ambient temperature used in the calculations TERMLOAD REAL Temperature relative to operate temperature 7.9.5 Settings Table 124: LFPTTR (26) Group settings (basic) Name Values (Range) Unit...
  • Page 258: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection Name Values (Range) Unit Step Default Description AlarmTemp 0 - 200 Deg C Temperature level for pickup (alarm) TripTemp 0 - 300 Deg C Temperature level for trip ReclTemp 0 - 300 Deg C Temperature for reset of lockout after trip AmbiSens...
  • Page 259: Operation Principle

    Section 7 1MRK 506 335-UUS A Current protection 7.9.7 Operation principle The sampled analog phase currents are pre-processed and for each phase current the RMS value is derived. These phase current values are fed to the thermal overload protection, one time constant LFPTTR/LCPTTR (26) function.
  • Page 260 Section 7 1MRK 506 335-UUS A Current protection When the component temperature reaches the set alarm level AlarmTemp the output signal ALARM is set. When the component temperature reaches the set trip level TripTemp the output signal TRIP is set. There is also a calculation of the present time to operate with the present current.
  • Page 261 Section 7 1MRK 506 335-UUS A Current protection Final Temp PICKUP > TripTemp actual temperature Calculation of actual temperature IA, IB, IC Calculation of final temperature Actual Temp > ALARM AlarmTemp TRIP Actual Temp > TripTemp Lock- LOCKOUT logic Actual Temp <...
  • Page 262: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection 7.9.8 Technical data Table 130: LFPTTR/LCPTTR (26)technical data Function Range or value Accuracy IBase Reference current (0-400)% of ± 1.0% of I Reference temperature (0-600) °F, (0 - 300)°C ± 2.0°F, ±2.0°C Operate time: Time constant t = (0–1000) minutes IEC 60255-8, ±5% + 200 ms...
  • Page 263: Function Block

    Section 7 1MRK 506 335-UUS A Current protection Breaker failure protection (CCRBRF, 50BF) ensures fast back-up tripping of surrounding breakers in case the protected breaker fails to open. CCRBRF (50BF) can be current based, contact based, or an adaptive combination of these two conditions. Current check with extremely short reset time is used as check criterion to achieve high security against inadvertent operation.
  • Page 264: Settings

    Section 7 1MRK 506 335-UUS A Current protection Table 132: CCRBRF (50BF) Output signals Name Type Description TRBU BOOLEAN Back-up trip by breaker failure protection function TRRET BOOLEAN Retrip by breaker failure protection function 7.10.5 Settings Table 133: CCRBRF (50BF) Group settings (basic) Name Values (Range) Unit...
  • Page 265: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection 7.10.6 Monitored data Table 136: CCRBRF (50BF) Monitored data Name Type Values (Range) Unit Description REAL Measured current in phase A REAL Measured current in phase B REAL Measured current in phase C REAL Measured residual current 7.10.7...
  • Page 266 Section 7 1MRK 506 335-UUS A Current protection 30 ms BFI_3P BFI_A BFP Started A 150ms BLOCK Time out A Reset A Retrip Time Out A BackupTrip A ANSI09000976-3-en.vsd ANSI09000976 V3 EN Figure 116: Simplified logic scheme of the CCRBRF (50BF) starting logic Pickup_PH a>b FunctionMode...
  • Page 267: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection BUTripMode 1 out of 3 2 out of 4 1 out of 4 Current High A BFP Started A a>b IN> Contact Closed A Current High B From other Backup Time Out A Current High C phases Current High A...
  • Page 268: Breaker Failure Protection Phase Segregated Activation And Output Csprbrf (50Bf)

    Section 7 1MRK 506 335-UUS A Current protection Function Range or value Accuracy Reset ratio > 95% Timers (0.000-60.000) s ± 0.5% ±10 ms Operate time for current 20 ms typically detection Reset time for current 10 ms maximum detection 7.11 Breaker failure protection phase segregated activation and output CSPRBRF (50BF)
  • Page 269: Function Block

    Section 7 1MRK 506 335-UUS A Current protection 7.11.3 Function block CSPRBRF (50BF) I3P* TRBU BLOCK TRRET BFI_3P TRRET_A BFI_A TRRET_B BFI_B TRRET_C BFI_C 52A_A 52A_B 52A_C ANSI10000217-1-en.vsd ANSI10000217 V1 EN Figure 120: CSPRBRF (50BF) function block 7.11.4 Signals Table 138: CSPRBRF (50BF) Input signals Name Type...
  • Page 270: Settings

    Section 7 1MRK 506 335-UUS A Current protection 7.11.5 Settings Table 140: CSPRBRF (50BF) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled FunctionMode Current Current Detection principle for back-up trip Contact Current&Contact BuTripMode...
  • Page 271: Operation Principle

    Section 7 1MRK 506 335-UUS A Current protection 7.11.7 Operation principle The Breaker failure protection, phase segregated activation and output (CSPRBRF 50BF) is initiated from protection trip command, either from protection functions within the IED or from external protection devices. The initiate signal can be phase selective or general (for all three phases).
  • Page 272 Section 7 1MRK 506 335-UUS A Current protection Pickup_PH a>b FunctionMode Current Reset A Contact Time out A Current and Contact Current High A BFP Started A CB Closed A a>b Pickup_BlKCont 52a_A Contact Closed A ANSI09000977-2-en.vsd ANSI09000977 V2 EN Figure 122: Simplified logic scheme of the CSPRBRF (50BF), CB position evaluation TRRET_C...
  • Page 273: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection BUTripMode 1 out of 3 2 out of 4 1 out of 4 Current High A BFP Started A a>b IN> Contact Closed A Current High B From other Backup Time Out A Current High C phases Current High A...
  • Page 274: Stub Protection Stbptoc (50Stb)

    Section 7 1MRK 506 335-UUS A Current protection Function Range or value Accuracy Reset ratio > 95% Timers (0.000-60.000) s ± 0.5% ±10 ms Operate time for current 20 ms typically detection Reset time for current 10 ms maximum detection 7.12 Stub protection STBPTOC (50STB) 7.12.1...
  • Page 275: Signals

    Section 7 1MRK 506 335-UUS A Current protection 7.12.4 Signals Table 145: STBPTOC (50STB) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function ENABLE BOOLEAN Enable stub protection usually with open disconnect switch (89b) Table 146: STBPTOC (50STB) Output signals...
  • Page 276: Operation Principle

    Section 7 1MRK 506 335-UUS A Current protection 7.12.7 Operation principle The sampled analog phase currents are pre-processed in a discrete Fourier filter (DFT) block. From the fundamental frequency components of each phase current the RMS value of each phase current is derived. These phase current values are fed to a comparator in the stub protection function STBPTOC (50STB).
  • Page 277: Pole Discrepancy Protection Ccrpld (52Pd)

    Section 7 1MRK 506 335-UUS A Current protection 7.13 Pole discrepancy protection CCRPLD (52PD) 7.13.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pole discrepancy protection CCRPLD 52PD SYMBOL-S V1 EN 7.13.2 Functionality Circuit breakers and disconnectors can end up with their phases in different positions (close-open), due to electrical or mechanical failures.
  • Page 278: Signals

    Section 7 1MRK 506 335-UUS A Current protection 7.13.4 Signals Table 151: CCRPLD (52PD) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function CLOSECMD BOOLEAN Close command to CB OPENCMD BOOLEAN Open command to CB...
  • Page 279: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection 7.13.6 Monitored data Table 155: CCRPLD (52PD) Monitored data Name Type Values (Range) Unit Description IMin REAL Lowest phase current IMax REAL Highest phase current 7.13.7 Operation principle The detection of pole discrepancy can be made in two different ways. If the contact based function is used an external logic can be made by connecting the auxiliary contacts of the circuit breaker so that a pole discrepancy is indicated, see figure 128.
  • Page 280: Pole Discrepancy Signaling From Circuit Breaker

    Section 7 1MRK 506 335-UUS A Current protection PD Signal from CB EXTPDIND 150 ms 0-Trip CLOSECMD tTrip+200 ms OPENCMD CB oper monitor Unsymmetrical current detection ANSI08000014-2-en.vsd ANSI08000014 V2 EN Figure 129: Simplified block diagram of pole discrepancy function - contact and current based The pole discrepancy protection is blocked if the input signal BLOCK is high.
  • Page 281: Unsymmetrical Current Detection

    Section 7 1MRK 506 335-UUS A Current protection 7.13.7.2 Unsymmetrical current detection Unsymmetrical current indicated if: • any phase current is lower than CurrUnsymPU of the highest current in the three phases. • the highest phase current is greater than CurrRelPU of IBase. If these conditions are true, an unsymmetrical condition is detected.
  • Page 282: Functionality

    Section 7 1MRK 506 335-UUS A Current protection 7.14.2 Functionality Conventional protection functions can not detect the broken conductor condition. Broken conductor check BRCPTOC (46) function, consisting of continuous phase selective current unsymmetrical check on the line where the IED is connected will give alarm or trip at detecting broken conductors.
  • Page 283: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection Table 160: BRCPTOC (46) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 7.14.6 Monitored data Table 161: BRCPTOC (46) Monitored data Name Type...
  • Page 284: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection The output trip signal TRIP is a three-phase trip. It can be used to command a trip to the circuit breaker or for alarm purpose only. TEST TEST-ACTIVE Block BRCPTOC=Yes PICKUP Function Enable BLOCK TRIP Unsymmetrical...
  • Page 285: Functionality

    Section 7 1MRK 506 335-UUS A Current protection 7.15 Directional over-/under-power protection GOPPDOP/ GUPPDUP (32/37) 7.15.1 Functionality The directional over-/under-power protection GOPPDOP (32)/GUPPDUP (37) can be used wherever a high/low active, reactive or apparent power protection or alarming is required. The functions can alternatively be used to check the direction of active or reactive power flow in the power system.
  • Page 286: Function Block

    Section 7 1MRK 506 335-UUS A Current protection 7.15.2.2 Function block GOPPDOP (32) I3P* TRIP V3P* TRIP1 BLOCK TRIP2 BLK1 BFI_3P BLK2 PICKUP1 PICKUP2 PPERCENT QPERCENT ANSI08000506-1-en.vsd ANSI08000506 V1 EN Figure 132: GOPPDOP (32) function block 7.15.2.3 Signals Table 163: GOPPDOP (32) Input signals Name Type...
  • Page 287: Settings

    Section 7 1MRK 506 335-UUS A Current protection 7.15.2.4 Settings Table 165: GOPPDOP (32) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled OpMode1 Disabled OverPower Operation mode 1 OverPower Power1 0.0 - 500.0 Power setting for stage 1 in % of calculated power base value...
  • Page 288: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection 7.15.2.5 Monitored data Table 168: GOPPDOP (32) Monitored data Name Type Values (Range) Unit Description REAL Active Power PPERCENT REAL Active power in % of calculated power base value REAL MVAr Reactive power QPERCENT REAL Reactive power in % of...
  • Page 289: Signals

    Section 7 1MRK 506 335-UUS A Current protection 7.15.3.3 Signals Table 169: GUPPDUP (37) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN...
  • Page 290: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection Name Values (Range) Unit Step Default Description Power2 0.0 - 500.0 Power setting for stage 2 in % of calculated power base value Angle2 -180.0 - 180.0 Characteristic angle for stage 2 TripDelay2 0.010 - 6000.000 0.001...
  • Page 291 Section 7 1MRK 506 335-UUS A Current protection Chosen current phasors Derivation of Complex S( angle) S( angle) < TRIP 1 S( composant) power Power1 Chosen voltage calculation in Char angle phasors PICKUP1 S( angle) < TRIP2 Power2 PICKUP2 P = POWRE Q = POWIM ANSI06000438-2-en.vsd ANSI06000438 V2 EN...
  • Page 292: Low Pass Filtering

    Section 7 1MRK 506 335-UUS A Current protection Mode Set value: Formula used for complex power calculation × (Equation 66) EQUATION2060-ANSI V1 EN = × × (Equation 67) EQUATION2061-ANSI V1 EN = × × (Equation 68) EQUATION2062-ANSI V1 EN = × ×...
  • Page 293: Technical Data

    Section 7 1MRK 506 335-UUS A Current protection make slower measurement response to the step changes in the measured quantity. Filtering is performed in accordance with the following recursive formula: S TD S TD S ⋅ − ⋅ Calculated (Equation 70) EQUATION1959-ANSI V1 EN Where is a new measured value to be used for the protection function...
  • Page 294: Negative Sequence Based Overcurrent Function Dnsptoc (46)

    Section 7 1MRK 506 335-UUS A Current protection 7.16 Negative sequence based overcurrent function DNSPTOC (46) 7.16.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Negative sequence based overcurrent DNSPTOC function 3I2> IEC09000132 V2 EN 7.16.2 Functionality Negative sequence based overcurrent function DNSPTOC (46) may be used in power line...
  • Page 295: Function Block

    Section 7 1MRK 506 335-UUS A Current protection 7.16.3 Function block DNSPTOC (46) I3P* TRIP V3P* TROC1 BLOCK TROC2 BLKOC1 BFI_3P ENMLTOC1 PU_OC1 BLKOC2 PU_OC2 ENMLTOC2 DIROC1 DIROC2 CURRENT VOLTAGE VIANGLE ANSI09000125-1-en.vsd ANSI09000125 V1 EN Figure 135: DNSPTOC (46) function block 7.16.4 Signals Table 177:...
  • Page 296: Settings

    Section 7 1MRK 506 335-UUS A Current protection Name Type Description CURRENT REAL Measured current value VOLTAGE REAL Measured voltage value UIANGLE REAL Angle between voltage and current 7.16.5 Settings Table 179: DNSPTOC (46) Group settings (basic) Name Values (Range) Unit Step Default...
  • Page 297: Monitored Data

    Section 7 1MRK 506 335-UUS A Current protection Table 180: DNSPTOC (46) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups 7.16.6 Monitored data Table 181: DNSPTOC (46) Monitored data Name Type...
  • Page 298 Section 7 1MRK 506 335-UUS A Current protection Function Range or value Accuracy Operate time, directional 30 ms typically at 0 to 2 x I 20 ms typically at 0 to 10 x I Reset time, directional 40 ms typically at 2 to 0 x I Critical impulse time 10 ms typically at 0 to 2 x I 2 ms typically at 0 to 10 x I...
  • Page 299: Two Step Undervoltage Protection Uv2Ptuv (27)

    Section 8 1MRK 506 335-UUS A Voltage protection Section 8 Voltage protection Two step undervoltage protection UV2PTUV (27) 8.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Two step undervoltage protection UV2PTUV 3U< SYMBOL-R-2U-GREATER-THAN V2 EN 8.1.2 Functionality Undervoltages can occur in the power system during faults or abnormal conditions.
  • Page 300: Signals

    Section 8 1MRK 506 335-UUS A Voltage protection 8.1.4 Signals Table 183: UV2PTUV (27) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BLK1 BOOLEAN Block of step 1 BLK2 BOOLEAN Block of step 2...
  • Page 301: Monitored Data

    Section 8 1MRK 506 335-UUS A Voltage protection Name Values (Range) Unit Step Default Description t1Min 0.000 - 60.000 0.001 5.000 Minimum operate time for inverse curves for step 1 0.05 - 1.10 0.01 0.05 Time multiplier for the inverse time delay for step 1 OperationStep2 Disabled...
  • Page 302: Measurement Principle

    Section 8 1MRK 506 335-UUS A Voltage protection UV2PTUV (27) can be set to measure phase-to-ground fundamental value, phase-to- phase fundamental value, phase-to-ground true RMS value or phase-to-phase true RMS value. The choice of the measuring is done by the parameter ConnType. The voltage related settings are made in percent of base voltage which is set in kV phase-to-phase voltage.
  • Page 303: Blocking

    Section 8 1MRK 506 335-UUS A Voltage protection The type B curve is described as: × 0.055 æ ö Vpickup < -V × ç ÷ è ø < Vpickup (Equation 74) EQUATION1608 V1 EN The lowest voltage is always used for the inverse time delay integration. The details of the different inverse time characteristics are shown in section 21.3 "Inverse time characteristics".
  • Page 304: Design

    Section 8 1MRK 506 335-UUS A Voltage protection 8.1.7.4 Design The voltage measuring elements continuously measure the three phase-to-neutral voltages or the three phase-to-phase voltages. Recursive fourier filters or true RMS filters of input voltage signals are used. The voltages are individually compared to the set value, and the lowest voltage is used for the inverse time characteristic integration.
  • Page 305: Technical Data

    Section 8 1MRK 506 335-UUS A Voltage protection 8.1.8 Technical data Table 188: UV2PTUV (27) technical data Function Range or value Accuracy VBase Operate voltage, low and (1–100)% of ± 0.5% of V high step Reset ratio <102% Inverse time See table characteristics for low and high step, see table...
  • Page 306: Function Block

    Section 8 1MRK 506 335-UUS A Voltage protection Two step overvoltage protection (OV2PTOV, 59) function can be used to detect open line ends, normally then combined with a directional reactive over-power function to supervise the system voltage. When triggered, the function will cause an alarm, switch in reactors, or switch out capacitor banks.
  • Page 307: Settings

    Section 8 1MRK 506 335-UUS A Voltage protection Name Type Description PU_ST1_A BOOLEAN Pick up signal from step 1 phase A PU_ST1_B BOOLEAN Pick up signal from step 1 phase B PU_ST1_C BOOLEAN Pick up signal from step 1 phase C PU_ST2 BOOLEAN Start signal from step 2...
  • Page 308: Monitored Data

    Section 8 1MRK 506 335-UUS A Voltage protection Table 192: OV2PTOV (59) Non group settings (basic) Name Values (Range) Unit Step Default Description GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups ConnType PhN DFT PhN DFT Group selector for connection type PhN RMS PhPh DFT...
  • Page 309: Measurement Principle

    Section 8 1MRK 506 335-UUS A Voltage protection Vpickup > ⋅ VBase kV ) / 3 (Equation 75) EQUATION1610 V2 EN and operation for phase-to-phase voltage over: > × Vpickup (%) VBase(kV) (Equation 76) EQUATION1992 V1 EN When phase-to-ground voltage measurement is selected the function automatically introduces division of the base value by the square root of three.
  • Page 310: Blocking

    Section 8 1MRK 506 335-UUS A Voltage protection ⋅ − 0 035 V Vpickup − > ⋅ − Vpickup > (Equation 78) ANSIEQUATION2287 V2 EN The type C curve is described as: ⋅ 0 035 V Vpickup − > ⋅ −...
  • Page 311: Design

    Section 8 1MRK 506 335-UUS A Voltage protection BLOCK: blocks all outputs BLK1: blocks all pickup and trip outputs related to step 1 BLK2: blocks all pickup and trip outputs related to step 2 8.2.7.4 Design The voltage measuring elements continuously measure the three phase-to-ground voltages or the three phase-to-phase voltages.
  • Page 312 Section 8 1MRK 506 335-UUS A Voltage protection Comparator PU_ST1_A VA or VAB V > Pickup1 Phase A Voltage Phase Selector PU_ST1_B Comparator OpMode1 VB or VBC Phase B V > Pickup1 1 out of 3 PU_ST1_C 2 outof 3 Pickup Phase C 3 out of 3...
  • Page 313: Technical Data

    Section 8 1MRK 506 335-UUS A Voltage protection 8.2.8 Technical data Table 194: OV2PTOV (59) technical data Function Range or value Accuracy VBase Operate voltage, step 1 (1-200)% of ± 0.5% of V at V < V and 2 ± 0.5% of V at V > V Reset ratio >98% Inverse time...
  • Page 314: Function Block

    Section 8 1MRK 506 335-UUS A Voltage protection single voltage input transformer fed from a broken delta or neutral point voltage transformer. ROV2PTOV (59N) has two voltage steps, where step 1 can be set as inverse or definite time delayed. Step 2 is always definite time delayed. 8.3.3 Function block ROV2PTOV (59N)
  • Page 315: Settings

    Section 8 1MRK 506 335-UUS A Voltage protection 8.3.5 Settings Table 197: ROV2PTOV (59N) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled OperationStep1 Disabled Enabled Enable execution of step 1 Enabled Characterist1 Definite time Definite time Selection of time delay curve type for step 1...
  • Page 316: Measurement Principle

    Section 8 1MRK 506 335-UUS A Voltage protection adding the input phase voltages. 3V may also be input single phase by either measuring directly from a voltage transformer in the neutral of a power transformer, or from a secondary broken delta connection of a transformer with a wye-grounded primary. ROV2PTOV (59N) has two steps with separate time delays.
  • Page 317 Section 8 1MRK 506 335-UUS A Voltage protection Comparator Phase 1 PU_ST1 VN > Pickup1 TRST1 Pickup PICKUP & Trip Output Logic Time integrator TRIP or Timer t1 Step 1 PU_ST2 Comparator Phase 1 TRST2 VN > Pickup2 Pickup PICKUP &...
  • Page 318: Technical Data

    Section 8 1MRK 506 335-UUS A Voltage protection 8.3.8 Technical data Table 200: ROV2PTOV (59N) technical data Function Range or value Accuracy VBase Operate voltage, step 1 (1-200)% of ± 0.5% of V at V < V ± 0.5% of V at V > V Operate voltage, step 2 (1–100)% of VBase...
  • Page 319: Function Block

    Section 8 1MRK 506 335-UUS A Voltage protection The operation of LOVPTUV (27) is supervised by the fuse failure supervision SDDRFUF. 8.4.3 Function block LOVPTUV (27) V3P* TRIP BLOCK PICKUP CBOPEN BLKV ANSI09000279-1-en.vsd ANSI09000279 V1 EN Figure 144: LOVPTUV (27) function block 8.4.4 Signals Table 201:...
  • Page 320: Operation Principle

    Section 8 1MRK 506 335-UUS A Voltage protection Table 204: LOVPTUV (27) Group settings (advanced) Name Values (Range) Unit Step Default Description tPulse 0.050 - 60.000 0.001 0.150 Duration of TRIP pulse tBlock 0.000 - 60.000 0.001 5.000 Time delay to block when all 3ph voltages are not low tRestore 0.000 - 60.000...
  • Page 321 Section 8 1MRK 506 335-UUS A Voltage protection LOSS OF VOLTAGE CHECK FUNCTION TEST TEST-ACTIVE & BlockLOV = Yes START BLOCK >1 Function Enable tTrip tPulse TRIP & STUL1N & STUL2N only 1 or 2 phases are low for Latched at least 10 s (not three) STUL3N Enable...
  • Page 322: Technical Data

    Section 8 1MRK 506 335-UUS A Voltage protection 8.4.7 Technical data Table 206: LOVPTUV (27) technical data Function Range or value Accuracy Operate voltage (0–100)% of VBase ± 0.5% of V Reset ratio <105% Pulse timer (0.050–60.000) s ± 0.5% ± 25 ms Timers (0.000–60.000) s ±...
  • Page 323: Underfrequency Protection Saptuf (81)

    Section 9 1MRK 506 335-UUS A Frequency protection Section 9 Frequency protection Underfrequency protection SAPTUF (81) 9.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Underfrequency protection SAPTUF f < SYMBOL-P V1 EN 9.1.2 Functionality Underfrequency occurs as a result of a lack of sufficient generation in the network.
  • Page 324: Signals

    Section 9 1MRK 506 335-UUS A Frequency protection 9.1.4 Signals Table 207: SAPTUF (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function Table 208: SAPTUF (81) Output signals Name Type Description...
  • Page 325: Measurement Principle

    Section 9 1MRK 506 335-UUS A Frequency protection than the set time delay the TRIP signal is issued. To avoid an unwanted trip due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function, that is, if the voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no PICKUP or TRIP signal is issued.
  • Page 326: Time Delay

    Section 9 1MRK 506 335-UUS A Frequency protection 9.1.7.2 Time delay The time delay for SAPTUF (81) is a settable definite time delay, specified by the setting tDelay. Trip signal issuing requires that the under frequency condition continues for at least the user set time delay.
  • Page 327: Overfrequency Protection Saptof (81)

    Section 9 1MRK 506 335-UUS A Frequency protection Function Range or value Accuracy Reset time, pickup function At 50 Hz: 60 ms typically at f -0.5 Hz to f +0.5 Hz At 60 Hz: 50 ms typically at f -0.5 Hz to f +0.5 Hz Operate time delay (0.000-60.000)s...
  • Page 328: Function Block

    Section 9 1MRK 506 335-UUS A Frequency protection 9.2.3 Function block SAPTOF (81) V3P* TRIP BLOCK BLKDMAGN ANSI09000280-1-en.vsd ANSI09000280 V1 EN Figure 149: SAPTOF (81) function block 9.2.4 Signals Table 212: SAPTOF (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK...
  • Page 329: Operation Principle

    Section 9 1MRK 506 335-UUS A Frequency protection 9.2.7 Operation principle Overfrequency protection SAPTOF (81) is used to detect high power system frequency. SAPTOF (81) has a settable definite time delay. If the frequency remains above the set value for a time period greater than the set time delay the TRIP signal is issued. To avoid an unwanted TRIP due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function, that is, if the voltage is lower than the set blocking voltage in the preprocessing function,...
  • Page 330: Time Delay

    Section 9 1MRK 506 335-UUS A Frequency protection 9.2.7.2 Time delay The time delay for SAPTOF (81) is a settable definite time delay, specified by the setting tDelay. If the PICKUP condition frequency ceases during the delay time, and is not fulfilled again within a defined reset time, the PICKUP output is reset.
  • Page 331: Technical Data

    Section 9 1MRK 506 335-UUS A Frequency protection 9.2.8 Technical data Table 216: SAPTOF (81) technical data Function Range or value Accuracy Operate value, pickup function (35.00-75.00) Hz ± 2.0 mHz at symmetrical three- phase voltage Reset ratio >0.999 Operate time, pickup function At 50 Hz: 200 ms typically at f -0.5 Hz to f +0.5 Hz...
  • Page 332: Function Block

    Section 9 1MRK 506 335-UUS A Frequency protection 9.3.3 Function block SAPFRC (81) V3P* TRIP BLOCK PICKUP RESTORE BLKDMAGN ANSI09000281-1-en.vsd ANSI09000281 V1 EN Figure 152: SAPFRC (81) function block 9.3.4 Signals Table 217: SAPFRC (81) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs...
  • Page 333: Operation Principle

    Section 9 1MRK 506 335-UUS A Frequency protection 9.3.6 Operation principle Rate-of-change frequency protection SAPFRC (81) is used to detect fast power system frequency changes at an early stage. It (81) has a settable definite time delay.To avoid an unwanted trip due to uncertain frequency measurement at low voltage magnitude, a voltage controlled blocking of the function is available from the preprocessing function that is, if the voltage is lower than the set blocking voltage in the preprocessing function, the function is blocked and no PICKUP or TRIP signal is issued.
  • Page 334: Design

    Section 9 1MRK 506 335-UUS A Frequency protection 9.3.6.3 Design BLOCK BLOCK freqNotValid BLKDMAGN Pickup Rate-of-Change & Comparator of Frequency Trip Output PICKUP Definite Time Delay [PUFreqGrad<0 PICKUP Logic tTrip df/dt < PUFreqGrad] [PUFreqGrad>0 TRIP df/dt > PUFreqGrad] Then PICKUP 100 ms Frequency Comparator...
  • Page 335: Current Circuit Supervision Ccsrdif (87)

    Section 10 1MRK 506 335-UUS A Secondary system supervision Section 10 Secondary system supervision 10.1 Current circuit supervision CCSRDIF (87) 10.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current circuit supervision CCSRDIF 10.1.2 Functionality Open or short circuited current transformer cores can cause unwanted operation of many protection functions such as differential, ground-fault current and negative-sequence current functions.
  • Page 336: Signals

    Section 10 1MRK 506 335-UUS A Secondary system supervision 10.1.4 Signals Table 221: CCSRDIF (87) Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL IREF GROUP Group signal for current reference SIGNAL BLOCK BOOLEAN Block of function Table 222: CCSRDIF (87) Output signals...
  • Page 337: Operation Principle

    Section 10 1MRK 506 335-UUS A Secondary system supervision 10.1.6 Operation principle Current circuit supervision CCSRDIF (87) compares the absolute value of the vectorial sum of the three phase currents |ΣIphase| and the numerical value of the residual current |Iref| from another current transformer set, see figure 155. The FAIL output will be set to a logical one when the following criteria are fulfilled: •...
  • Page 338: Technical Data

    Section 10 1MRK 506 335-UUS A Secondary system supervision | åI | - | I phase Slope = 1 Operation Slope = 0.8 area MinOp | åI | + | I phase 99000068.vsd IEC99000068 V1 EN Figure 156: Operate characteristics Due to the formulas for the axis compared, |SIphase | - |I ref | and |S I phase | + | I ref | respectively, the slope can not be above 2.
  • Page 339: Functionality

    Section 10 1MRK 506 335-UUS A Secondary system supervision 10.2.2 Functionality The aim of the fuse failure supervision function SDDRFUF is to block voltage measuring functions at failures in the secondary circuits between the voltage transformer and the IED in order to avoid inadvertent operations that otherwise might occur. The fuse failure supervision function basically has three different detection methods, negative sequence and zero sequence based detection and an additional delta voltage and delta current detection.
  • Page 340: Signals

    Section 10 1MRK 506 335-UUS A Secondary system supervision 10.2.4 Signals Table 227: SDDRFUF Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function BOOLEAN Active when circuit breaker is closed...
  • Page 341: Monitored Data

    Section 10 1MRK 506 335-UUS A Secondary system supervision Name Values (Range) Unit Step Default Description 3I2PU 1 - 100 Pickup of negative sequence undercurrent element in % of IBase OpDVDI Disabled Disabled Operation of change based function Disable/ Enabled Enable DVPU 1 - 100...
  • Page 342: Operation Principle

    Section 10 1MRK 506 335-UUS A Secondary system supervision 10.2.7 Operation principle 10.2.7.1 Zero and negative sequence detection The zero and negative sequence function continuously measures the currents and voltages in all three phases and calculates: (see figure 158) • the zero-sequence voltage 3V •...
  • Page 343: Delta Current And Delta Voltage Detection

    Section 10 1MRK 506 335-UUS A Secondary system supervision Sequence Detection 3I0PU CurrZeroSeq Zero sequence filter CurrNegSeq a>b 100 ms Negative sequence filter FuseFailDetZeroSeq a>b 100 ms 3I2PU FuseFailDetNegSeq 3V0PU VoltZeroSeq Zero sequence a>b filter VoltNegSeq Negative sequence a>b filter 3V2PU ANSI10000036-2-en.vsd ANSI10000036 V2 EN...
  • Page 344 Section 10 1MRK 506 335-UUS A Secondary system supervision • The magnitude of the phase-ground voltage has been above VPPU for more than 1.5 cycle • The magnitude of DV is higher than the setting DVPU • The magnitude of DI is below the setting DIPU and at least one of the following conditions are fulfilled: •...
  • Page 345 Section 10 1MRK 506 335-UUS A Secondary system supervision DVDI Detection DVDI detection Phase 1 One cycle delay |DI| a>b DIPU One cycle delay |DV| a>b DVPU a>b 20 ms 1.5 cycle VPPU DVDI detection Phase 2 Same logic as for phase 1 DVDI detection Phase 3 Same logic as for phase 1 a<b...
  • Page 346: Dead Line Detection

    Section 10 1MRK 506 335-UUS A Secondary system supervision 10.2.7.3 Dead line detection A simplified diagram for the functionality is found in figure 160. A dead phase condition is indicated if both the voltage and the current in one phase is below their respective setting values VDLDPU and IDLDPU.
  • Page 347 Section 10 1MRK 506 335-UUS A Secondary system supervision • V0I0 OR V2I2. Both negative and zero sequence is activated and working in parallel in an OR-condition. • V0I0 AND V2I2. Both negative and zero sequence is activated and working in series (AND-condition for operation).
  • Page 348 Section 10 1MRK 506 335-UUS A Secondary system supervision of MCBOP signal to prevent the unwanted operation of voltage dependent function due to non simultaneous closing of the main contacts of the miniature circuit breaker. The input signal 89b is supposed to be connected via a terminal binary input to the N.C. auxiliary contact of the line disconnector.
  • Page 349 Section 10 1MRK 506 335-UUS A Secondary system supervision Fuse failure detection Main logic TEST TEST ACTIVE BlocFuse = Yes intBlock BLOCK All VP < VSealInPU SealIn = Enabled Any VP < VsealInPU FuseFailDetDVDI OpDVDI = Enabled 5 sec FuseFailDetZeroSeq FuseFailDetNegSeq V2I2 V0I0...
  • Page 350: Technical Data

    Section 10 1MRK 506 335-UUS A Secondary system supervision Figure 161: Simplified logic diagram for fuse failure supervision function, Main logic 10.2.8 Technical data Table 232: SDDRFUF technical data Function Range or value Accuracy Operate voltage, zero sequence (1-100)% of VBase ±...
  • Page 351: Function Block

    Section 10 1MRK 506 335-UUS A Secondary system supervision 10.3.3 Function block GUID-6F85BD70-4D18-4A00-A410-313233025F3A V2 EN Figure 162: Function block 10.3.4 Signals Table 233: TCSSCBR Input signals Name Type Default Description TCS_STATE BOOLEAN Trip circuit fail indication from I/O-card BLOCK BOOLEAN Block of function Table 234: TCSSCBR Output signals...
  • Page 352: Technical Data

    Section 10 1MRK 506 335-UUS A Secondary system supervision TCS_STATE status Timer ALARM BLOCK ANSI11000289 V1 EN Figure 163: Functional module diagram Trip circuit supervision generates a current of approximately 1.0 mA through the supervised circuit. It must be ensured that this current will not cause a latch up of the controlled object.
  • Page 353: Synchronism Check, Energizing Check, And Synchronizing Sesrsyn (25)

    Section 11 1MRK 506 335-UUS A Control Section 11 Control 11.1 Synchronism check, energizing check, and synchronizing SESRSYN (25) 11.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Synchrocheck, energizing check, and SESRSYN synchronizing sc/vc SYMBOL-M V1 EN 11.1.2 Functionality...
  • Page 354: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.1.3 Function block SESRSYN (25) V3PB1* SYNOK V3PB2* AUTOSYOK V3PL1* AUTOENOK V3PL2* MANSYOK BLOCK MANENOK BLKSYNCH TSTSYNOK BLKSC TSTAUTSY BLKENERG TSTMANSY BUS1_OP TSTENOK BUS1_CL VSELFAIL BUS2_OP B1SEL BUS2_CL B2SEL LINE1_OP L1SEL LINE1_CL L2SEL LINE2_OP SYNPROGR LINE2_CL...
  • Page 355 Section 11 1MRK 506 335-UUS A Control Name Type Default Description BLKENERG BOOLEAN Block energizing check BUS1_OP BOOLEAN Open status for CB or disconnector connected to bus1 BUS1_CL BOOLEAN Close status for CB and disconnector connected to bus1 BUS2_OP BOOLEAN Open status for CB or disconnector connected to bus2 BUS2_CL BOOLEAN...
  • Page 356: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Description B1SEL BOOLEAN Bus1 selected B2SEL BOOLEAN Bus2 selected L1SEL BOOLEAN Line1 selected L2SEL BOOLEAN Line2 selected SYNPROGR BOOLEAN Synchronizing in progress SYNFAIL BOOLEAN Synchronizing failed FRDIFSYN BOOLEAN Frequency difference out of limit for synchronizing FRDERIVA BOOLEAN Frequency derivative out of limit for synchronizing...
  • Page 357 Section 11 1MRK 506 335-UUS A Control Name Values (Range) Unit Step Default Description OperationSynch Disabled Disabled Operation for synchronizing function Off/On Enabled FreqDiffMin 0.003 - 0.250 0.001 0.010 Minimum frequency difference limit for synchronizing FreqDiffMax 0.050 - 0.500 0.001 0.200 Maximum frequency difference limit for synchronizing...
  • Page 358: Monitored Data

    Section 11 1MRK 506 335-UUS A Control Table 240: SESRSYN (25) Non group settings (basic) Name Values (Range) Unit Step Default Description GblBaseSelBus 1 - 6 Selection of one of the Global Base Value groups, Bus GblBaseSelLine 1 - 6 Selection of one of the Global Base Value groups, Line SelPhaseBus1...
  • Page 359: Operation Principle

    Section 11 1MRK 506 335-UUS A Control 11.1.7 Operation principle 11.1.7.1 Basic functionality The synchronism check function measures the conditions across the circuit breaker and compares them to set limits. The output is only given when all measured quantities are simultaneously within their set limits.
  • Page 360 Section 11 1MRK 506 335-UUS A Control If both sides are higher than 80% of the Ubase values, the measured values are compared with the set values for acceptable frequency, phase angle and voltage difference: FreqDiff, PhaseDiffand VDiffSC. If a compensation factor is set due to the use of different voltages on the bus and line, the factor is deducted from the line voltage before the comparison of the phase angle values.
  • Page 361: Synchronizing

    Section 11 1MRK 506 335-UUS A Control Note! Similar logic for Manual Synchrocheck. OperationSC = Enabled TSTSC BLKSC BLOCK AUTOSYOK 0-tSCA VDiffSC 50 ms Bus voltage >80% of GblBaseSelBus VOKSC Line voltage >80% of GblBaseSelLine VDIFFSC FRDIFFA FreqDiffA PHDIFFA PhaseDiffA VDIFFME voltageDifferenceValue FRDIFFME...
  • Page 362 Section 11 1MRK 506 335-UUS A Control voltage difference between bus and line is acceptable, the measured values are also compared with the set values for acceptable frequency FreqDiffMax and FreqDiffMin, rate of change of frequency FreqRateChange and phase angle, which has to be smaller than the internally preset value of 15 degrees.
  • Page 363: Energizing Check

    Section 11 1MRK 506 335-UUS A Control 11.1.7.4 Energizing check Voltage values are measured in the IED and are available for evaluation by the Synchronism check function. The function measures voltages on the busbar and the line to verify whether they are live or dead.
  • Page 364: Voltage Selection

    Section 11 1MRK 506 335-UUS A Control 11.1.7.6 Voltage selection The voltage selection module including supervision of included voltage transformers for the different arrangements is a basic part of the SESRSYN (25) function and determines the voltages fed to the Synchronizing, Synchrocheck and Energizing check functions. This includes the selection of the appropriate Line and Bus voltages and MCB supervision.
  • Page 365: Voltage Selection For A Breaker-And-A-Half Circuit Breaker Arrangement

    Section 11 1MRK 506 335-UUS A Control BUS1_OP B1SEL BUS1_CL BUS2_OP B2SEL BUS2_CL invalidSelection busVoltage bus1Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF BLOCK en05000779_2_ansi.vsd ANSI05000779 V2 EN Figure 167: Logic diagram for the voltage selection function of a single circuit breaker with double busbars 11.1.7.8 Voltage selection for a breaker-and-a-half circuit breaker arrangement Note that with breaker-and-a-half schemes three Synchronism check functions must be...
  • Page 366 Section 11 1MRK 506 335-UUS A Control the selected Line voltage as a reference to the fixed Bus 1 voltage, which indicates B1SEL. The fuse supervision is connected to VL1OK-VL1FF, VL2OK-VL2FF and with alternative Healthy or Failing MCB signals depending on what is available from each MCB.
  • Page 367 Section 11 1MRK 506 335-UUS A Control LINE1_OP L1SEL LINE1_CL BUS1_OP L2SEL BUS1_CL B2SEL LINE2_OP invalidSelection LINE2_CL BUS2_OP BUS2_CL lineVoltage line1Voltage line2Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000780_2_ansi.vsd ANSI05000780 V2 EN Figure 168: Simplified logic diagram for the voltage selection function for a bus circuit breaker in a breaker-and-a- half arrangement Technical manual...
  • Page 368 Section 11 1MRK 506 335-UUS A Control LINE1_OP L1SEL LINE1_CL B1SEL BUS1_OP BUS1_CL line1Voltage busVoltage bus1Voltage LINE2_OP L2SEL LINE2_CL B2SEL invalidSelection BUS2_OP BUS2_CL lineVoltage line2Voltage bus2Voltage VB1OK VB1FF selectedFuseOK VB2OK VB2FF VSELFAIL VL1OK VL1FF VL2OK VL2FF BLOCK en05000781_2_ansi.vsd ANSI05000781 V2 EN Figure 169: Simplified logic diagram for the voltage selection function for the tie circuit breaker in breaker-and-a- half arrangement.
  • Page 369: Technical Data

    Section 11 1MRK 506 335-UUS A Control 11.1.8 Technical data Table 242: SESRSYN (25) technical data Function Range or value Accuracy Phase shift, j (-180 to 180) degrees line Voltage ratio, V 0.500 - 2.000 line Reset ratio, synchronism check >...
  • Page 370: Identification

    Section 11 1MRK 506 335-UUS A Control 11.2.1 Identification Function Description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Autorecloser for 3-phase operation SMBRREC O->I SYMBOL-L V1 EN 11.2.2 Functionality The autorecloser for 3-phase operation SMBRREC (79) function provides high-speed and/or delayed auto-reclosing for single or multi-breaker applications.
  • Page 371: Signals

    Section 11 1MRK 506 335-UUS A Control 11.2.4 Signals Table 243: SMBRREC (79) Input signals Name Type Default Description BOOLEAN Enables AR when Operation = ExternalCtrl BOOLEAN Disables AR when Operation = ExternalCtrl BLKON BOOLEAN Sets AR in blocked state BLKOFF BOOLEAN Releases AR from blocked state...
  • Page 372: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Description WFMASTER BOOLEAN Signal to Slave issued by Master for sequential reclosing COUNT3P1 INTEGER Counting the number of three-phase reclosing shot 1 COUNT3P2 INTEGER Counting the number of three-phase reclosing shot 2 COUNT3P3 INTEGER Counting the number of three-phase reclosing shot 3...
  • Page 373: Operation Principle

    Section 11 1MRK 506 335-UUS A Control Name Values (Range) Unit Step Default Description CBReadyType Select type of circuit breaker ready signal CO/OCO t2 3Ph 0.00 - 6000.00 0.01 30.00 Open time for shot 2, three-phase t3 3Ph 0.00 - 6000.00 0.01 30.00 Open time for shot 3, three-phase...
  • Page 374 Section 11 1MRK 506 335-UUS A Control • CBREADY: CB ready for a reclosing cycle, for example, charged operating gear • 52a: to ensure that the CB was closed when the line fault occurred and initiation was applied • No blocking or inhibit signal shall be present. After the initiate has been accepted, it is latched in and an internal signal “Started”...
  • Page 375: Control Of The Auto-Reclosing Open Time

    Section 11 1MRK 506 335-UUS A Control Operation:Enabled Operation:Disabled Operation:External Ctrl SETON AND S initiate autoInitiate Additional conditions TRSOTF pickup CBREADY AND S 120 ms CB Closed 0-tCBClosedMin READY Blocking conditions Inhibit condistions count 0 ANSI08000017-2-en.vsd ANSI08000017 V2 EN Figure 171: Auto-reclosing Disabled/Enabled and start 11.2.6.3 Control of the auto-reclosing open time...
  • Page 376 Section 11 1MRK 506 335-UUS A Control By choosing CBReadyType = CO (CB ready for a Close-Open sequence) the readiness of the circuit breaker is also checked before issuing the CB closing command. If the CB has a readiness contact of type CBReadyType = OCO (CB ready for an Open-Close-Open sequence) this condition may not be complied with after the tripping and at the moment of reclosure.
  • Page 377 Section 11 1MRK 506 335-UUS A Control "SMBRREC Open time" timer From logic for 3PT1TO 0-t1 3Ph reclosing programs 3PT1TO 3PT2TO 3PT3TO 3PT4TO Pulse 3PT5TO SYNC initiate Blocking out CBREADY SMBRREC State Control 0-tSync COUNTER Shot 0 Shot 1 Shot 2 Shot 3 Shot 4 Pulse (above)
  • Page 378 Section 11 1MRK 506 335-UUS A Control pulse CLOSECMD initiate 3PT1 COUNT3P1 counter 3PT2 COUNT3P2 counter 3PT3 COUNT3P3 counter 3PT4 COUNT3P4 counter 3PT5 COUNT3P5 counter COUNTAR RSTCOUNT counter ANSI08000245-1-en.vsd ANSI08000245 V1 EN Figure 173: Pulsing of closing command and driving the operation counters Transient fault After the reclosing command the reset timer tReset starts running for the set time.
  • Page 379 Section 11 1MRK 506 335-UUS A Control initiate block start UNSUCCL shot 0 UnsucClByCBchk = CBcheck Pulse SMBRREC (Closing) 0-tUnsucCl CBclosed ANSI09000203-2-en.vsd ANSI09000203 V2 EN Figure 174: Issue of signal UNSUCCL, unsuccessful reclosing Automatic continuation of the reclosing sequence The auto-reclosing function can be programmed to proceed to the following reclosing shots (if selected) even if the initiate signals are not received from the protection functions, but the breaker is still not closed.
  • Page 380 Section 11 1MRK 506 335-UUS A Control Initiation of reclosing from CB open information If a user wants to apply initiation of auto-reclosing from CB open position instead of from protection trip signals, the function offers such a possibility. This starting mode is selected by a setting parameter StartByCBOpen = Enabled.
  • Page 381: Technical Data

    Section 11 1MRK 506 335-UUS A Control 11.2.7 Technical data Table 247: SMBRREC (79) technical data Function Range or value Accuracy Number of autoreclosing shots 1 - 5 Autoreclosing open time: shot 1 - t1 3Ph (0.000-60.000) s ± 0.5% ± 25 ms shot 2 - t2 3Ph (0.00-6000.00) s shot 3 - t3 3Ph...
  • Page 382: Function Block

    Section 11 1MRK 506 335-UUS A Control Up to five reclosing attempts can be included by parameter setting. The first attempt can be single- and/or three phase for single-phase or multi-phase faults respectively. Multiple autoreclosing functions are provided for multi-breaker arrangements. A priority circuit allows one circuit breaker to close first and the second will only close if the fault proved to be transient.
  • Page 383 Section 11 1MRK 506 335-UUS A Control Name Type Default Description TRSOTF BOOLEAN Makes AR to continue to shots 2-5 at a trip from SOTF ZONESTEP BOOLEAN Coordination between local AR and down stream devices TR3P BOOLEAN Signal to AR that a three-phase tripping occurred THOLHOLD BOOLEAN Holds AR in wait state...
  • Page 384: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Description COUNT3P4 INTEGER Counting the number of three-phase reclosing shot 4 COUNT3P5 INTEGER Counting the number of three-phase reclosing shot 5 COUNTAR INTEGER Counting total number of reclosing shots 11.3.5 Settings Table 250: STBRREC (79) Group settings (basic) Name...
  • Page 385: Operation Principle

    Section 11 1MRK 506 335-UUS A Control Name Values (Range) Unit Step Default Description t2 3Ph 0.00 - 6000.00 0.01 30.00 Open time for shot 2, three-phase t3 3Ph 0.00 - 6000.00 0.01 30.00 Open time for shot 3, three-phase t4 3Ph 0.00 - 6000.00 0.01...
  • Page 386 Section 11 1MRK 506 335-UUS A Control For a new auto-reclosing cycle to be started, a number of conditions need to be met. They are linked to dedicated inputs. The inputs are: • CBREADY: CB ready for a reclosing cycle, for example, charged operating gear •...
  • Page 387: Auto-Reclosing Mode Selection

    Section 11 1MRK 506 335-UUS A Control "STBRREC (79) Open time" timer From logic for 3PT1TO 0-t1 3Ph reclosing programs 1PT1 3PT1TO 3PT2TO 3PT3TO 3PT4TO PULSE 3PT5TO SYNC initiate Blocking out CBREADY STBRREC (79) State Control 0-tSync COUNTER Shot 0 Shot 1 Shot 2 Shot 3...
  • Page 388: Control Of The Auto-Reclosing Open Time For Shot 1

    Section 11 1MRK 506 335-UUS A Control 11.3.6.4 Control of the auto-reclosing open time for shot 1 Up to four different time settings can be used for the first shot, and one extension time. There are separate settings for single- and three-phase auto-reclosing open time, t1 1Ph, t1 3Ph.
  • Page 389: Reclosing Checks And The Reset Timer

    Section 11 1MRK 506 335-UUS A Control 11.3.6.6 Reclosing checks and the reset timer When dead time has elapsed during the auto-reclosing procedure certain conditions must be fulfilled before the CB closing command is issued. To achieve this, signals are exchanged between program modules to check that these conditions are met.
  • Page 390: Pulsing Of The Cb Closing Command

    Section 11 1MRK 506 335-UUS A Control "STBRREC (79) Open time" timer From logic for 3PT1TO 0-t1 3Ph reclosing programs 1PT1 3PT1TO 3PT2TO 3PT3TO 3PT4TO PULSE 3PT5TO SYNC initiate Blocking out CBREADY STBRREC (79) State Control 0-tSync COUNTER Shot 0 Shot 1 Shot 2 Shot 3...
  • Page 391: Transient Fault

    Section 11 1MRK 506 335-UUS A Control pulse CLOSECMD initiate 1PT1 COUNT1P counter 3PT1 COUNT3P1 counter 3PT2 COUNT3P2 counter 3PT3 COUNT3P3 counter 3PT4 COUNT3P4 counter 3PT5 COUNT3P5 counter COUNTAR RSTCOUNT counter ANSI10000258-1-en.vsd ANSI10000258 V1 EN Figure 181: Pulsing of the closing command and driving the operation counters 11.3.6.8 Transient fault After the reclosing command the reset timer tReset starts running for the set time.
  • Page 392: Automatic Continuation Of The Reclosing Sequence

    Section 11 1MRK 506 335-UUS A Control initiate block start UNSUCCL shot 0 UnsucClByCBchk = CBcheck Pulse STBRREC (Closing) 0-tUnsucCl CBclosed ANSI10000263-1-en.vsd ANSI10000263 V1 EN Figure 182: Issue of signal UNSUCCL, unsuccessful reclosing 11.3.6.10 Automatic continuation of the reclosing sequence The auto-reclosing function can be programmed to proceed to the following reclosing shots (if selected) even if the initiate signals are not received from the protection functions, but the breaker is still not closed.
  • Page 393: Initiation Of Reclosing From Cb Open Information

    Section 11 1MRK 506 335-UUS A Control 0-tAutoContWait CLOSECB CBClosed initiate PICKUP ANSI10000254-1-en.vsd ANSI10000254 V1 EN Figure 183: Automatic proceeding of shot 2 to 5 11.3.6.11 Initiation of reclosing from CB open information If a user wants to apply initiation of auto-reclosing from CB open position instead of from protection trip signals, the function offers such a possibility.
  • Page 394 Section 11 1MRK 506 335-UUS A Control StartByCBOpen= Enabled RI_HS PICKUP ³1 100 ms 100 ms ANSI10000262-1-en.vsd ANSI10000262 V1 EN Figure 184: Pulsing of the start inputs Technical manual...
  • Page 395: Technical Data

    Section 11 1MRK 506 335-UUS A Control 11.3.7 Technical data Table 252: STBRREC (79) technical data Function Range or value Accuracy Number of autoreclosing shots Autoreclosing open time: (0.000-60.000) s ± 0.5% ± 25 ms Shot 1 - t1 3Ph Shot 1 - t1 1Ph shot 2 - t2 3Ph (0.00-6000.00) s...
  • Page 396: Switch Controller Scswi

    Section 11 1MRK 506 335-UUS A Control The switch controller SCSWI initializes and supervises all functions to properly select and operate switching primary apparatuses. Each of the 8 switch controllers SCSWI may handle and operate on one three-phase apparatus. Each of the 3 circuit breaker controllers SXCBR provides the actual position status and pass the commands to the primary circuit breaker and supervises the switching operation and positions.
  • Page 397: Signals

    Section 11 1MRK 506 335-UUS A Control 11.4.2.4 Signals Table 253: SCSWI Input signals Name Type Default Description BLOCK BOOLEAN Block of function PSTO INTEGER Operator place selection L_SEL BOOLEAN Select signal from local panel L_OPEN BOOLEAN Open signal from local panel L_CLOSE BOOLEAN Close signal from local panel...
  • Page 398: Settings

    Section 11 1MRK 506 335-UUS A Control 11.4.2.5 Settings Table 255: SCSWI Non group settings (basic) Name Values (Range) Unit Step Default Description CtlModel Dir Norm SBO Enh Specifies control model type SBO Enh PosDependent Always permitted Always permitted Permission to operate depending on the Not perm at 00/11 position tSelect...
  • Page 399: Settings

    Section 11 1MRK 506 335-UUS A Control Table 257: SXCBR Output signals Name Type Description XPOS GROUP SIGNAL Group connection to CSWI EXE_OP BOOLEAN Executes the command for open direction EXE_CL BOOLEAN Executes the command for close direction OP_BLKD BOOLEAN Indication that the function is blocked for open commands CL_BLKD...
  • Page 400: Circuit Switch Sxswi

    Section 11 1MRK 506 335-UUS A Control 11.4.4 Circuit switch SXSWI 11.4.4.1 Signals Table 259: SXSWI Input signals Name Type Default Description BLOCK BOOLEAN Block of function LR_SWI BOOLEAN Local/Remote switch indication from switchyard OPEN BOOLEAN Pulsed signal used to immediately open the switch CLOSE BOOLEAN Pulsed signal used to immediately close the switch...
  • Page 401: Settings

    Section 11 1MRK 506 335-UUS A Control 11.4.4.2 Settings Table 261: SXSWI Non group settings (basic) Name Values (Range) Unit Step Default Description tStartMove 0.000 - 60.000 0.001 3.000 Supervision time for the apparatus to move after a command tIntermediate 0.000 - 60.000 0.001 15.000...
  • Page 402: Signals

    Section 11 1MRK 506 335-UUS A Control 11.4.5.4 Signals Table 262: QCBAY Input signals Name Type Default Description LR_OFF BOOLEAN External Local/Remote switch is in Off position LR_LOC BOOLEAN External Local/Remote switch is in Local position LR_REM BOOLEAN External Local/Remote switch is in Remote position LR_VALID BOOLEAN Data representing the L/R switch position is valid...
  • Page 403: Function Block

    Section 11 1MRK 506 335-UUS A Control block. A parameter in function block LOCREM is set to choose if the switch signals are coming from the local HMI or from an external hardware switch connected via binary inputs. 11.4.6.3 Function block LOCREM CTRLOFF LOCCTRL...
  • Page 404: Local Remote Control Locremctrl

    Section 11 1MRK 506 335-UUS A Control 11.4.7 Local remote control LOCREMCTRL 11.4.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local remote control LOCREMCTRL 11.4.7.2 Functionality The signals from the local HMI or from an external local/remote switch are applied via the function blocks LOCREM and LOCREMCTRL to the Bay control QCBAY function block.
  • Page 405: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Default Description PSTO4 INTEGER PSTO input channel 4 PSTO5 INTEGER PSTO input channel 5 PSTO6 INTEGER PSTO input channel 6 PSTO7 INTEGER PSTO input channel 7 PSTO8 INTEGER PSTO input channel 8 PSTO9 INTEGER PSTO input channel 9...
  • Page 406: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.4.8.2 Function block SELGGIO SELECT1 RESERVED SELECT2 SELECT3 SELECT4 SELECT5 SELECT6 SELECT7 SELECT8 SELECT9 SELECT10 SELECT11 SELECT12 SELECT13 SELECT14 SELECT15 SELECT16 IEC09000084_1_en.vsd IEC09000084 V1 EN Figure 189: SELGGIO function block 11.4.8.3 Signals Table 270: SELGGIO Input signals Name Type...
  • Page 407: Settings

    Section 11 1MRK 506 335-UUS A Control 11.4.8.4 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 11.4.9 Operation principle 11.4.9.1 Switch controller SCSWI The Switch controller (SCSWI) is provided with verification checks for the select - execute sequence, that is, checks the conditions prior each step of the operation.
  • Page 408 Section 11 1MRK 506 335-UUS A Control In the supervision phase, the switch controller function evaluates the "cause" values from the switch modules Circuit breaker (SXCBR)/ Circuit switch (SXSWI). At error the "cause" value with highest priority is shown. Blocking principles The blocking signals are normally coming from the bay control function (QCBAY) and via the IEC 61850 communication from the operator place.
  • Page 409 Section 11 1MRK 506 335-UUS A Control SCSWI SXCBR EXE_CL CLOSE SYNC_OK START_SY SY_INPRO SESRSYN CLOSECMD Synchro Synchronizing check function ANSI09000209-1-en.vsd ANSI09000209 V1 EN Figure 190: Example of interaction between SCSWI, SESRSYN (25) (synchronism check and synchronizing function) and SXCBR function Time diagrams The Switch controller (SCSWI) function has timers for evaluating different time supervision conditions.
  • Page 410 Section 11 1MRK 506 335-UUS A Control execute command phase A open close phase B open close open phase C close command termination phase A command termination phase B command termination phase C command termination circuit breaker open close t1>tExecutionFB, then tExecutionFB long-operation-time in timer...
  • Page 411: Bay Control Qcbay

    Section 11 1MRK 506 335-UUS A Control Error handling Depending on the error that occurs during the command sequence, the error signal will be set with a value. Table describes vendor specific cause values in addition to these specified in IEC 61850-8-1 standard. The list of values of the “cause” are in order of priority.
  • Page 412 Section 11 1MRK 506 335-UUS A Control for the local/remote switch is not valid the PSTO output will always be set to faulty state (3), which means no possibility to operate. To adapt the signals from the local HMI or from an external local/remote switch, the function blocks LOCREM and LOCREMCTRL are needed and connected to QCBAY.
  • Page 413: Local Remote/Local Remote Control Locrem/Locremctrl

    Section 11 1MRK 506 335-UUS A Control The switching of the Local/Remote switch requires at least system operator level. The password will be requested at an attempt to operate if authority levels have been defined in the IED. Otherwise the default authority level, SuperUser, can handle the control without LogOn.
  • Page 414: Interlocking

    Section 11 1MRK 506 335-UUS A Control 11.5 Interlocking 11.5.1 Functionality The interlocking functionality blocks the possibility to operate high-voltage switching devices, for instance when a disconnector is under load, in order to prevent material damage and/or accidental human injury. Each control IED has interlocking functions for different switchyard arrangements, each handling the interlocking of one bay.
  • Page 415: Logic Diagram

    Section 11 1MRK 506 335-UUS A Control 11.5.2.4 Logic diagram The function contains logic to enable the open and close commands respectively if the interlocking conditions are fulfilled. That means also, if the switch being controlled has its position defined as open (via POSOPEN) for example, then the appropriate enable signal output (in this case EN_OPEN) is false.
  • Page 416: Settings

    Section 11 1MRK 506 335-UUS A Control 11.5.2.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 11.5.3 Interlocking for busbar grounding switch BB_ES (3) 11.5.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification...
  • Page 417: Logic Diagram

    Section 11 1MRK 506 335-UUS A Control 11.5.3.4 Logic diagram BB_ES VP_BB_DC 89GREL BB_DC_OP 89GITL EXDU_BB 89G_OP BBGSOPTR 89G_CL BBGSCLTR en04000546_ansi.vsd ANSI04000546 V1 EN 11.5.3.5 Signals Table 276: BB_ES (3) Input signals Name Type Default Description 89G_OP BOOLEAN Busbar grounding switch 89G is in open position 89G_CL BOOLEAN Busbar grounding switch 89G is in closed position...
  • Page 418: Identification

    Section 11 1MRK 506 335-UUS A Control 11.5.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for bus-section breaker A1A2_BS 11.5.4.2 Functionality The interlocking for bus-section breaker (A1A2_BS ,3) function is used for one bus- section circuit breaker between section 1 and 2 according to figure 199.
  • Page 419: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.5.4.3 Function block A1A2_BS (3) 152_OP 152OPREL 152_CL 152OPITL 189_OP 152CLREL 189_CL 152CLITL 289_OP 189REL 289_CL 189ITL 389G_OP 289REL 389G_CL 289ITL 489G_OP 389GREL 489G_CL 389GITL S189G_OP 489GREL S189G_CL 489GITL S289G_OP S1S2OPTR S289G_CL S1S2CLTR BBTR_OP 189OPTR VP_BBTR...
  • Page 420: Logic Diagram

    Section 11 1MRK 506 335-UUS A Control 11.5.4.4 Logic diagram A1A2_BS 152_OP 152_CL VP152 189_OP 189_CL VP189 289_OP 289_CL VP289 389G_OP 389G_CL VP389G 489G_OP 489G_CL VP489G S1189G_OP S1189G_CL VPS1189G S2289G_OP S2289G_CL VPS2289G VP189 189_OP 152OPREL 152O_EX1 152OPITL VP289 289_OP 152O_EX2 VP_BBTR BBTR_OP EXDU_12...
  • Page 421: Signals

    Section 11 1MRK 506 335-UUS A Control VP152 VP389G 289REL VP489G 289ITL VPS2289G 152_OP 389G_OP 489G_OP S2289G_OP EXDU_89G 289_EX1 VP489G VPS2289G 489G_CL S2289G_CL EXDU_89G 289_EX2 389GREL VP189 VP289 389GITL 189_OP 489GREL 289_OP 489GITL 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR...
  • Page 422 Section 11 1MRK 506 335-UUS A Control Name Type Default Description S289G_CL BOOLEAN S289G on bus section 2 is in closed position BBTR_OP BOOLEAN No busbar transfer is in progress VP_BBTR BOOLEAN Status are valid for apparatuses involved in the busbar transfer EXDU_12 BOOLEAN...
  • Page 423: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Description VPS1S2TR BOOLEAN Status of the apparatuses between bus section 1 and 2 are valid VP189TR BOOLEAN Switch status of 189 is valid (open or closed) VP289TR BOOLEAN Switch status of 289 is valid (open or closed) 11.5.4.6 Settings The function does not have any settings available in Local HMI or Protection and Control...
  • Page 424: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.5.5.3 Function block A1A2_DC (3) 089_OP 089OPREL 089_CL 089OPITL S189G_OP 089CLREL S189G_CL 089CLITL S289G_OP DCOPTR S289G_CL DCCLTR S1DC_OP VPDCTR S2DC_OP VPS1_DC VPS2_DC EXDU_89G EXDU_BB 089C_EX1 089C_EX2 089O_EX1 089O_EX2 089O_EX3 ANSI09000067-1-en.vsd ANSI09000067 V1 EN Figure 202: A1A2_DC (3) function block 11.5.5.4...
  • Page 425: Signals

    Section 11 1MRK 506 335-UUS A Control ANSI11000276-1-vsd ANSI11000276 V1 EN 11.5.5.5 Signals Table 280: A1A2_DC (3) Input signals Name Type Default Description 089_OP BOOLEAN 089 is in open position 089_CL BOOLEAN 089 is in closed position S189G_OP BOOLEAN S189G on bus section 1 is in open position S189G_CL BOOLEAN S189G on bus section 1 is in closed position...
  • Page 426: Settings

    Section 11 1MRK 506 335-UUS A Control Table 281: A1A2_DC (3) Output signals Name Type Description 089OPREL BOOLEAN Opening of 089 is allowed 089OPITL BOOLEAN Opening of 089 is not allowed 089CLREL BOOLEAN Closing of 089 is allowed 089CLITL BOOLEAN Closing of 089 is not allowed DCOPTR BOOLEAN...
  • Page 427 Section 11 1MRK 506 335-UUS A Control WA1 (A) WA2 (B) WA7 (C) 2089 189G 289G en04000514_ansi.vsd ANSI04000514 V1 EN Figure 203: Switchyard layout ABC_BC (3) The interlocking functionality in 650 series can not handle the transfer bus WA7(C). Technical manual...
  • Page 428: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.5.6.3 Function block ABC_BC (3) 152_OP 152OPREL 152_CL 152OPITL 189_OP 152CLREL 189_CL 152CLITL 289_OP 189REL 289_CL 189ITL 789_OP 289REL 789_CL 289ITL 2089_OP 789REL 2089_CL 789ITL 189G_OP 2089REL 189G_CL 2089ITL 289G_OP 189GREL 289G_CL 189GITL 1189G_OP 289GREL 1189G_CL...
  • Page 429: Logic Diagram

    Section 11 1MRK 506 335-UUS A Control 11.5.6.4 Logic diagram ABC_BC 152_OP 152_CL VP152 189_OP 189_CL VP189 2089_OP 2089_CL VP2089 789_OP 789_CL VP789 289_OP 289_CL VP289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G 7189G_OP 7189G_CL VP7189G VP189 152OPREL...
  • Page 430 Section 11 1MRK 506 335-UUS A Control VP152 VP189 289REL VP189G 289ITL VP289G VP2189G 152_OP 189_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189 VP_BC_12 189_CL BC_12_CL EXDU_BC 289_EX2 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX3 en04000535_ansi.vsd ANSI04000535 V1 EN VP152 VP2089 789REL VP189G 789ITL VP289G...
  • Page 431: Signals

    Section 11 1MRK 506 335-UUS A Control VP189 189GREL VP2089 189GITL VP789 289GREL VP289 289GITL 189_OP 2089_OP 789_OP 289_OP 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 2089_OP 22089OTR 289_OP 22089CTR VP2089 V22089TR VP289 789_OP 789OPTR 789_CL 789CLTR VP789 VP789TR 189_OP 1289OPTR 289_OP 1289CLTR VP189...
  • Page 432 Section 11 1MRK 506 335-UUS A Control Name Type Default Description 189G_CL BOOLEAN 189G is in closed position 289G_OP BOOLEAN 289G is in open position 289G_CL BOOLEAN 289G is in closed position 1189G_OP BOOLEAN Grounding switch 1189G on busbar WA1 is in open position 1189G_CL BOOLEAN...
  • Page 433 Section 11 1MRK 506 335-UUS A Control Table 283: ABC_BC (3) Output signals Name Type Description 152OPREL BOOLEAN Opening of 152 is allowed 152OPITL BOOLEAN Opening of 152 is not allowed 152CLREL BOOLEAN Closing of 152 is allowed 152CLITL BOOLEAN Closing of 152 is not allowed 189REL BOOLEAN...
  • Page 434: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Description V22089TR BOOLEAN Switch status of 289 and 2089 are valid (open or closed) VP789TR BOOLEAN Switch status of 789 is valid (open or closed) VP1289TR BOOLEAN Switch status of 189 and 289 are valid (open or closed) VPBC12TR BOOLEAN Status of bus coupler apparatuses between bus1 and...
  • Page 435 Section 11 1MRK 506 335-UUS A Control WA1 (A) WA2 (B) 189G 189G 289G 289G 389G 389G BH_LINE_B BH_LINE_A 6189 6289 289G 189G 989G 989G BH_CONN en04000513_ansi.vsd ANSI04000513 V1 EN Figure 205: Switchyard layout breaker-and-a-half Three types of interlocking modules per diameter are defined. BH_LINE_A (3) and BH_LINE_B (3) are the connections from a line to a busbar.
  • Page 436: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.5.7.3 Function block BH_CONN (3) 152_OP 152CLREL 152_CL 152CLITL 6189_OP 6189REL 6189_CL 6189ITL 6289_OP 6289REL 6289_CL 6289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 1389G_OP 1389G_CL 2389G_OP 2389G_CL 6189_EX1 6189_EX2 6289_EX1 6289_EX2 ANSI09000072-1-en.vsd ANSI09000072 V1 EN Figure 206:...
  • Page 437 Section 11 1MRK 506 335-UUS A Control BH_LINE_A (3) 152_OP 152CLREL 152_CL 152CLITL 689_OP 689REL 689_CL 689ITL 189_OP 189REL 189_CL 189ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 389GREL 389G_CL 389GITL 989_OP 989REL 989_CL 989ITL 989G_OP 989GREL 989G_CL 989GITL C152_OP 189OPTR...
  • Page 438 Section 11 1MRK 506 335-UUS A Control BH_LINE_B (3) 152_OP 152CLREL 152_CL 152CLITL 689_OP 689REL 689_CL 689ITL 289_OP 289REL 289_CL 289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 389GREL 389G_CL 389GITL 989_OP 989REL 989_CL 989ITL 989G_OP 989GREL 989G_CL 989GITL C152_OP 289OPTR...
  • Page 439: Logic Diagrams

    Section 11 1MRK 506 335-UUS A Control 11.5.7.4 Logic diagrams BH_CONN 152_OP 152_CL VP152 6189_OP 6189_CL VP6189 6289_OP 6289_CL VP6289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 1389G_OP 1389G_CL VP1389G 2389G_OP 2389G_CL VP2389G VP6189 152CLREL VP6289 152CLITL VP152 VP189G 6189REL VP289G 61891ITL VP1389G 152_OP...
  • Page 440 Section 11 1MRK 506 335-UUS A Control BH_LINE_A 152_OP 152_CL VP152 189_OP 189_CL VP189 689_OP 689_CL VP689 989G_OP 989G_CL VP989G 989_OP 989_CL VP989 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G C152_OP C152_CL VPC152 C189G_OP C189G_CL VPC189G C289G_OP C289G_CL VPC289G C6189_OP C6189_CL...
  • Page 441 Section 11 1MRK 506 335-UUS A Control VP152 VP189G 189REL VP289G 189ITL VP1189G 152_OP 189G_OP 289G_OP 1189G_OP EXDU_89G 189_EX1 VP189G VP1189G 189G_CL 1189G_CL EXDU_89G 189_EX2 VP189 189GREL VP689 189GITL 189_OP 289GREL 689_OP 289GITL VP689 VP989 389GREL VPC6189 389GITL 689_OP 989_OP C6189_OP VP152 989REL...
  • Page 442 Section 11 1MRK 506 335-UUS A Control BH_LINE_B 152_OP 152_CL VP152 289_OP 289_CL VP289 689_OP 689_CL VP689 989G_OP VP989G 989G_CL 989_OP 989_CL VP989 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G C152_OP VPC152 C152_CL C189G_OP C189G_CL VPC189G C289G_OP C289G_CL VPC289G C6289_OP C6289_CL...
  • Page 443 Section 11 1MRK 506 335-UUS A Control VP152 VP189G 289REL VP289G 289ITL VP2189G 152_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX2 VP289 189GREL VP689 189GITL 289_OP 289GREL 689_OP 289GITL VP689 VP989 389GREL VPC6289 389GITL 689_OP 989_OP C6289_OP VP152 989REL...
  • Page 444: Signals

    Section 11 1MRK 506 335-UUS A Control 11.5.7.5 Signals Table 284: BH_CONN (3) Input signals Name Type Default Description 152_OP BOOLEAN 152 is in open position 152_CL BOOLEAN 152 is in closed position 6189_OP BOOLEAN 6189 is in open position 6189_CL BOOLEAN 6189 is in closed position...
  • Page 445 Section 11 1MRK 506 335-UUS A Control Name Type Default Description 989_OP BOOLEAN 989 is in open position 989_CL BOOLEAN 989 is in closed position 989G_OP BOOLEAN 989G is in open position 989G_CL BOOLEAN 989G is in closed position C152_OP BOOLEAN 152 in module BH_CONN is in open position C152_CL...
  • Page 446 Section 11 1MRK 506 335-UUS A Control Name Type Default Description 689_CL BOOLEAN 689 is in closed position 289_OP BOOLEAN 289 is in open position 289_CL BOOLEAN 289 is in closed position 189G_OP BOOLEAN 189G is in open position 189G_CL BOOLEAN 189G is in closed position 289G_OP...
  • Page 447 Section 11 1MRK 506 335-UUS A Control Name Type Default Description 989_EX5 BOOLEAN External condition for apparatus 989 989_EX6 BOOLEAN External condition for apparatus 989 989_EX7 BOOLEAN External condition for apparatus 989 Table 287: BH_CONN (3) Output signals Name Type Description 152CLREL BOOLEAN...
  • Page 448: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Description 189OPTR BOOLEAN 189 is in open position 189CLTR BOOLEAN 189 is in closed position VP189TR BOOLEAN Switch status of 189 is valid (open or closed) Table 289: BH_LINE_B (3) Output signals Name Type Description...
  • Page 449: Identification

    Section 11 1MRK 506 335-UUS A Control 11.5.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Interlocking for double CB bay DB_BUS_A Interlocking for double CB bay DB_BUS_B Interlocking for double CB bay DB_LINE 11.5.8.2 Functionality The interlocking for a double busbar double circuit breaker bay including DB_BUS_A (3), DB_BUS_B (3) and DB_LINE (3) functions are used for a line connected to a double...
  • Page 450: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.5.8.3 Function block DB_BUS_A (3) 152_OP 152CLREL 152_CL 152CLITL 189_OP 6189REL 189_CL 6189ITL 6189_OP 189REL 6189_CL 189ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389G_OP 189OPTR 389G_CL 189CLTR 1189G_OP VP189TR 1189G_CL EXDU_89G 6189_EX1 6189_EX2 189_EX1...
  • Page 451 Section 11 1MRK 506 335-UUS A Control DB_LINE (3) 152_OP 989REL 152_CL 989ITL 252_OP 389GREL 252_CL 389GITL 6189_OP 989GREL 6189_CL 989GITL 189G_OP 189G_CL 289G_OP 289G_CL 6289_OP 6289_CL 489G_OP 489G_CL 589G_OP 589G_CL 989_OP 989_CL 389G_OP 389G_CL 989G_OP 989G_CL VOLT_OFF VOLT_ON 989_EX1 989_EX2 989_EX3 989_EX4...
  • Page 452: Logic Diagrams

    Section 11 1MRK 506 335-UUS A Control 11.5.8.4 Logic diagrams DB_BUS_A 152_OP 152_CL VP152 6189_OP 6189_CL VP6189 189_OP 189_CL VP189 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389G_OP 389G_CL VP389G 1189G_OP 1189G_CL VP1189G VP6189 152CLREL VP189 152CLITL VP152 VP189G 6189REL VP289G 6189ITL VP389G 152_OP...
  • Page 453 Section 11 1MRK 506 335-UUS A Control DB_BUS_B 252_OP 252_CL VP252 6289_OP 6289_CL VP6289 289_OP 289_CL VP289 489G_OP 489G_CL VP489G 589G_OP 589G_CL VP589G 389G_OP 389G_CL VP389G 2189G_OP 2189G_CL VP2189G VP6289 252CLREL VP289 252CLITL VP252 VP489G 6289REL VP589G 6289ITL VP389G 252_OP 489G_OP 589G_OP 389G_OP...
  • Page 454 Section 11 1MRK 506 335-UUS A Control DB_LINE 152_OP 152_CL VP152 252_OP 252_CL VP252 6189_OP 6189_CL VP6189 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 6289_OP 6289_CL VP6289 489G_OP 489G_CL VP489G 589G_OP 589G_CL VP589G 989_OP 989_CL VP989 389G_OP 389G_CL VP389G 989G_OP 989G_CL VP989G VOLT_OFF VOLT_ON...
  • Page 455: Signals

    Section 11 1MRK 506 335-UUS A Control VP152 VP189G VP289G VP389G VP989G VP6289 152_OP 189G_OP 289G_OP 389G_OP 989G_OP 6289_OP 989_EX2 VP252 VP6189 VP389G VP489G VP589G VP989G 252_OP 6189_OP 389G_OP 489G_OP 589G_OP 989G_OP 989_EX3 VP389G VP989G VP6189 VP6289 389G_OP 989G_OP 6189_OP 6289_OP 989_EX4 VP389G...
  • Page 456 Section 11 1MRK 506 335-UUS A Control Name Type Default Description 6189_OP BOOLEAN 6189 is in open position 6189_CL BOOLEAN 6189 is in closed position 189G_OP BOOLEAN 189G is in open position 189G_CL BOOLEAN 189G is in closed position 289G_OP BOOLEAN 289G is in open position 289G_CL...
  • Page 457 Section 11 1MRK 506 335-UUS A Control Name Type Default Description EXDU_89G BOOLEAN No transmission error from bay containing grounding switch QC21 6289_EX1 BOOLEAN External condition for apparatus 6289 6289_EX2 BOOLEAN External condition for apparatus 6289 289_EX1 BOOLEAN External condition for apparatus 289 289_EX2 BOOLEAN External condition for apparatus 289...
  • Page 458 Section 11 1MRK 506 335-UUS A Control Name Type Default Description 989_EX3 BOOLEAN External condition for apparatus 989 989_EX4 BOOLEAN External condition for apparatus 989 989_EX5 BOOLEAN External condition for apparatus 989 Table 293: DB_BUS_A (3) Output signals Name Type Description 152CLREL BOOLEAN...
  • Page 459: Settings

    Section 11 1MRK 506 335-UUS A Control Table 295: DB_LINE (3) Output signals Name Type Description 989REL BOOLEAN Switching of 989 is allowed 989ITL BOOLEAN Switching of 989 is not allowed 389GREL BOOLEAN Switching of 389G is allowed 389GITL BOOLEAN Switching of 389G is not allowed 989GREL BOOLEAN...
  • Page 460 Section 11 1MRK 506 335-UUS A Control WA1 (A) WA2 (B) WA7 (C) 189G 289G 989G en04000478_ansi.vsd ANSI04000478 V1 EN Figure 213: Switchyard layout ABC_LINE (3) The interlocking functionality in 650 series can not handle the transfer bus WA7(C). Technical manual...
  • Page 461: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.5.9.3 Function block ABC_LINE (3) 152_OP 152CLREL 152_CL 152CLITL 989_OP 989REL 989_CL 989ITL 189_OP 189REL 189_CL 189ITL 289_OP 289REL 289_CL 289ITL 789_OP 789REL 789_CL 789ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 989G_OP 989GREL 989G_CL...
  • Page 462: Logic Diagram

    Section 11 1MRK 506 335-UUS A Control 11.5.9.4 Logic diagram ABC_LINE 152_OP 152_CL VP152 989_OP VP989 989_CL 152CLREL 189_OP 152CLITL 189_CL VP189 289_OP 289_CL VP289 789_OP 789_CL VP789 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 989G_OP 989G_CL VP989G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G...
  • Page 463 Section 11 1MRK 506 335-UUS A Control 189REL VP152 VP289 VP189G 189ITL VP289G VP1189G 152_OP 289_OP 189G_OP 289G_OP 1189G_OP EXDU_89G 189_EX1 VP289 VP_BC_12 289_CL BC_12_CL EXDU_BC 189_EX2 VP189G VP1189G 189G_CL 1189G_CL EXDU_89G 189EX3 en04000528_ansi.vsd ANSI04000528 V1 EN Technical manual...
  • Page 464 Section 11 1MRK 506 335-UUS A Control 289REL VP152 VP189 VP189G 289ITL VP289G VP2189G 152_OP 189_OP 189G_OP 289G_OP 2189G_OP EXDU_89G 289_EX1 VP189 VP_BC_12 QB1_CL BC_12_CL EXDU_BC 289_EX2 VP189G VP2189G 189G_CL 2189G_CL EXDU_89G 289_EX3 en04000529_ansi.vsd ANSI04000529 V1 EN Technical manual...
  • Page 465 Section 11 1MRK 506 335-UUS A Control VP989G 789REL VP7189G VP_BB7_D 789ITL VP_BC_17 VP_BC_27 989G_OP 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_17_OP BC_27_OP EXDU_BC 789_EX1 VP152 VP189 VP989G VP989 VP7189G VP_BB7_D VP_BC_17 152_CL 189_CL 989G_OP 989_CL 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_17_CL EXDU_BC 789_EX2 en04000530_ansi.vsd ANSI04000530 V1 EN...
  • Page 466 Section 11 1MRK 506 335-UUS A Control VP152 VP289 VP989G VP989 VP7189G VP_BB7_D VP_BC_27 152_CL 289_CL 989G_OP 989_CL 7189G_OP EXDU_89G BB7_D_OP EXDU_BPB BC_27_CL EXDU_BC 789_EX3 VP989G VP7189G 989G_CL 7189G_CL EXDU_89G 789_EX4 VP189 189GREL VP289 189GITL VP989 289GREL 189_OP 289GITL 289_OP 989_OP VP789 VP989...
  • Page 467: Signals

    Section 11 1MRK 506 335-UUS A Control 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR VP289 VP289TR 789_OP 789OPTR 789_CL 789CLTR VP789 VP789TR 189_OP 1289OPTR 289_OP 1289CLTR VP189 VP1289TR VP289 en04000532_ansi.vsd ANSI04000532 V1 EN 11.5.9.5 Signals Table 296: ABC_LINE (3) Input signals Name Type...
  • Page 468 Section 11 1MRK 506 335-UUS A Control Name Type Default Description 1189G_OP BOOLEAN Grounding switch 1189G on busbar WA1 is in open position 1189G_CL BOOLEAN Grounding switch 1189G on busbar WA1 is in closed position 2189G_OP BOOLEAN Grounding switch 2189G on busbar WA2 is in open position 2189G_CL BOOLEAN...
  • Page 469 Section 11 1MRK 506 335-UUS A Control Name Type Default Description 189_EX3 BOOLEAN External condition for apparatus 189 289_EX1 BOOLEAN External condition for apparatus 289 289_EX2 BOOLEAN External condition for apparatus 289 289_EX3 BOOLEAN External condition for apparatus 289 789_EX1 BOOLEAN External condition for apparatus 789 789_EX2...
  • Page 470: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Description VP289TR BOOLEAN Switch status of 289 is valid (open or closed) VP789TR BOOLEAN Switch status of 789 is valid (open or closed) VP1289TR BOOLEAN Switch status of 189 and 289 are valid (open or closed) 11.5.9.6 Settings The function does not have any settings available in Local HMI or Protection and Control...
  • Page 471 Section 11 1MRK 506 335-UUS A Control WA1 (A) WA2 (B) 189G AB_TRAFO 289G 389G 252 and 489G are not used in this interlocking 489G en04000515_ansi.vsd ANSI04000515 V1 EN Figure 215: Switchyard layout AB_TRAFO (3) Technical manual...
  • Page 472: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.5.10.3 Function block AB_TRAFO (3) 152_OP 152CLREL 152_CL 152CLITL 189_OP 189REL 189_CL 189ITL 289_OP 289REL 289_CL 289ITL 189G_OP 189GREL 189G_CL 189GITL 289G_OP 289GREL 289G_CL 289GITL 389_OP 189OPTR 389_CL 189CLTR 489_OP 289OPTR 489_CL 289CLTR 389G_OP 1289OPTR 389G_CL...
  • Page 473: Logic Diagram

    Section 11 1MRK 506 335-UUS A Control 11.5.10.4 Logic diagram AB_TRAFO 152_OP 152_CL VP152 189_OP 189_CL VP189 289_OP 289_CL VP289 189G_OP 189G_CL VP189G 289G_OP 289G_CL VP289G 389_OP 389_CL VP389 489_OP 489_CL VP489 389G_OP 389G_CL VP389G 1189G_OP 1189G_CL VP1189G 2189G_OP 2189G_CL VP2189G VP189 152CLREL...
  • Page 474 Section 11 1MRK 506 335-UUS A Control VP152 VP289 189REL VP189G 189ITL VP289G VP389G VP1189G 152_OP 289_OP 189G_OP 289G_OP 389G_OP 1189G_OP EXDU_89G 189_EX1 VP289 VP389G VP_BC_12 289_CL 389G_OP BC_12_CL EXDU_BC 189_EX2 VP189G VP289G VP389G VP1189G 189G_CL 289G_CL 389G_CL 1189G_CL EXDU_89G 189_EX3 en04000539_ansi.vsd ANSI04000539 V1 EN...
  • Page 475: Signals

    Section 11 1MRK 506 335-UUS A Control 189GREL VP189 VP289 189GITL VP389 289GREL VP489 289GITL 189_OP 289_OP 389_OP 489_OP 189_OP 189OPTR 189_CL 189CLTR VP189 VP189TR 289_OP 289OPTR 289_CL 289CLTR VP289TR VP289 189_OP 1289OPTR 289_OP 1289CLTR VP189 VP1289TR VP289 en04000541_ansi.vsd ANSI04000541 V1 EN 11.5.10.5 Signals Table 298:...
  • Page 476 Section 11 1MRK 506 335-UUS A Control Name Type Default Description VP_BC_12 BOOLEAN Status of bus coupler apparatuses between bus1 and bus 2 are valid. EXDU_89G BOOLEAN No transmission error from any bay containing grounding switches EXDU_BC BOOLEAN No transmission error from any bus coupler bay 152_EX1 BOOLEAN External condition for breaker 152...
  • Page 477: Settings

    Section 11 1MRK 506 335-UUS A Control 11.5.10.6 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600). 11.5.11 Position evaluation POS_EVAL 11.5.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 478: Signals

    Section 11 1MRK 506 335-UUS A Control Input position (Value) Signal quality Output OPENPOS Output CLOSEPOS 0 (Breaker intermediate) Good 1 (Breaker open) Good 2 (Breaker closed) Good 3 (Breaker faulty) Good Invalid Oscillatory 11.5.11.5 Signals Table 300: POS_EVAL Input signals Name Type Default...
  • Page 479 Section 11 1MRK 506 335-UUS A Control The open or closed positions of the HV apparatuses are inputs to software modules distributed in the control IEDs. Each module contains the interlocking logic for a bay. The interlocking logic in a module is different, depending on the bay function and the switchyard arrangements, that is, double-breaker or breaker-and-a-half bays have different modules.
  • Page 480 Section 11 1MRK 506 335-UUS A Control Station bus Bay 1 Bay n Bus coupler Disc 189 and 289 closed Disc 189 and 289 closed WA1 ungrounded WA1 ungrounded WA1 and WA2 interconn WA1 not grounded . . . WA1 not grounded WA2 not grounded WA2 not grounded WA1 and WA2 interconn...
  • Page 481: Logic Rotating Switch For Function Selection And Lhmi Presentation Slggio

    Section 11 1MRK 506 335-UUS A Control or if the disconnectors operate in parallel to other closed connections, or if they are grounding on both sides. • Circuit breaker closing is only interlocked against running disconnectors in its bay or additionally in a transformer bay against the disconnectors and grounding switch on the other side of the transformer, if there is no disconnector between CB and transformer.
  • Page 482: Functionality

    Section 11 1MRK 506 335-UUS A Control 11.6.2 Functionality The logic rotating switch for function selection and LHMI presentation SLGGIO (or the selector switch function block) is used to get an enhanced selector switch functionality compared to the one provided by a hardware selector switch. Hardware selector switches are used extensively by utilities, in order to have different functions operating on pre-set values.
  • Page 483 Section 11 1MRK 506 335-UUS A Control Table 303: SLGGIO Output signals Name Type Description BOOLEAN Selector switch position 1 BOOLEAN Selector switch position 2 BOOLEAN Selector switch position 3 BOOLEAN Selector switch position 4 BOOLEAN Selector switch position 5 BOOLEAN Selector switch position 6 BOOLEAN...
  • Page 484: Settings

    Section 11 1MRK 506 335-UUS A Control 11.6.5 Settings Table 304: SLGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled NrPos 2 - 32 Number of positions in the switch OutType Pulsed Steady Output type, steady or pulse...
  • Page 485: Selector Mini Switch Vsggio

    Section 11 1MRK 506 335-UUS A Control PSTO input. If any operation is allowed the signal INTONE from the Fixed signal function block can be connected. SLGGIO function block has also an integer value output, that generates the actual position number. The positions and the block names are fully settable by the user.
  • Page 486: Settings

    Section 11 1MRK 506 335-UUS A Control Table 307: VSGGIO Output signals Name Type Description BLOCKED BOOLEAN The function is active but the functionality is blocked POSITION INTEGER Position indication, integer POS1 BOOLEAN Position 1 indication, logical signal POS2 BOOLEAN Position 2 indication, logical signal CMDPOS12 BOOLEAN...
  • Page 487: Iec 61850 Generic Communication I/O Functions Dpggio

    Section 11 1MRK 506 335-UUS A Control It is important for indication in the SLD that the a symbol is associated with a controllable object, otherwise the symbol won't be displayed on the screen. A symbol is created and configured in GDE tool in PCM600. The PSTO input is connected to the Local remote switch to have a selection of operators place, operation from local HMI (Local) or through IEC 61850 (Remote).
  • Page 488: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.8.3 Function block DPGGIO OPEN POSITION CLOSE VALID IEC09000075_1_en.vsd IEC09000075 V1 EN Figure 221: DPGGIO function block 11.8.4 Signals Table 309: DPGGIO Input signals Name Type Default Description OPEN BOOLEAN Open indication CLOSE BOOLEAN Close indication VALID...
  • Page 489: Single Point Generic Control 8 Signals Spc8Ggio

    Section 11 1MRK 506 335-UUS A Control 11.9 Single point generic control 8 signals SPC8GGIO 11.9.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Single point generic control 8 signals SPC8GGIO 11.9.2 Functionality The Single point generic control 8 signals SPC8GGIO function block is a collection of 8 single point commands, designed to bring in commands from REMOTE (SCADA) to those parts of the logic configuration that do not need extensive command receiving functionality (for example, SCSWI).
  • Page 490: Settings

    Section 11 1MRK 506 335-UUS A Control Table 312: SPC8GGIO Output signals Name Type Description OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN Output 7 OUT8...
  • Page 491: Operation Principle

    Section 11 1MRK 506 335-UUS A Control 11.9.6 Operation principle The PSTO input selects the operator place (LOCAL, REMOTE or ALL). One of the eight outputs is activated based on the command sent from the operator place selected. The settings Latchedx and tPulsex (where x is the respective output) will determine if the signal will be pulsed (and how long the pulse is) or latched (steady).
  • Page 492: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.10.3 Function block AUTOBITS BLOCK ^CMDBIT1 PSTO ^CMDBIT2 ^CMDBIT3 ^CMDBIT4 ^CMDBIT5 ^CMDBIT6 ^CMDBIT7 ^CMDBIT8 ^CMDBIT9 ^CMDBIT10 ^CMDBIT11 ^CMDBIT12 ^CMDBIT13 ^CMDBIT14 ^CMDBIT15 ^CMDBIT16 ^CMDBIT17 ^CMDBIT18 ^CMDBIT19 ^CMDBIT20 ^CMDBIT21 ^CMDBIT22 ^CMDBIT23 ^CMDBIT24 ^CMDBIT25 ^CMDBIT26 ^CMDBIT27 ^CMDBIT28 ^CMDBIT29 ^CMDBIT30...
  • Page 493: Settings

    Section 11 1MRK 506 335-UUS A Control Name Type Description CMDBIT4 BOOLEAN Command out bit 4 CMDBIT5 BOOLEAN Command out bit 5 CMDBIT6 BOOLEAN Command out bit 6 CMDBIT7 BOOLEAN Command out bit 7 CMDBIT8 BOOLEAN Command out bit 8 CMDBIT9 BOOLEAN Command out bit 9...
  • Page 494: Operation Principle

    Section 11 1MRK 506 335-UUS A Control 11.10.6 Operation principle Automation bits function (AUTOBITS) has 32 individual outputs which each can be mapped as a Binary Output point in DNP3. The output is operated by a "Object 12" in DNP3. This object contains parameters for control-code, count, on-time and off-time. To operate an AUTOBITS output point, send a control-code of latch-On, latch-Off, pulse- On, pulse-Off, Trip or Close.
  • Page 495: Signals

    Section 11 1MRK 506 335-UUS A Control 11.11.3 Signals Table 317: I103CMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 318: I103CMD Output signals Name Type Description 16-AR BOOLEAN Information number 16 disable/enable autorecloser 17-DIFF BOOLEAN Information number 17, block of differential protection 18-PROT BOOLEAN...
  • Page 496: Signals

    Section 11 1MRK 506 335-UUS A Control 11.12.3 Signals Table 320: I103IEDCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands Table 321: I103IEDCMD Output signals Name Type Description 19-LEDRS BOOLEAN Information number 19, reset LEDs 23-GRP1 BOOLEAN Information number 23, activate setting group 1 24-GRP2 BOOLEAN...
  • Page 497: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.13.2 Function block I103USRCMD BLOCK ^OUTPUT1 ^OUTPUT2 ^OUTPUT3 ^OUTPUT4 ^OUTPUT5 ^OUTPUT6 ^OUTPUT7 ^OUTPUT8 IEC10000284-1-en.vsd IEC10000284 V1 EN Figure 226: I103USRCMD function block 11.13.3 Signals Table 323: I103USRCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of commands...
  • Page 498: Function Commands Generic For Iec 60870-5-103 I103Gencmd

    Section 11 1MRK 506 335-UUS A Control Name Values (Range) Unit Step Default Description InfNo_2 1 - 255 Information number for output 2 (1-255) InfNo_3 1 - 255 Information number for output 3 (1-255) InfNo_4 1 - 255 Information number for output 4 (1-255) InfNo_5 1 - 255 Information number for output 5 (1-255)
  • Page 499: Signals

    Section 11 1MRK 506 335-UUS A Control 11.14.3 Signals Table 326: I103GENCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command Table 327: I103GENCMD Output signals Name Type Description CMD_OFF BOOLEAN Command output OFF CMD_ON BOOLEAN Command output ON 11.14.4 Settings Table 328:...
  • Page 500: Function Block

    Section 11 1MRK 506 335-UUS A Control 11.15.2 Function block I103POSCMD BLOCK POSITION SELECT IEC10000286-1-en.vsd IEC10000286 V1 EN Figure 228: I103POSCMD function block 11.15.3 Signals Table 329: I103POSCMD Input signals Name Type Default Description BLOCK BOOLEAN Block of command POSITION INTEGER Position of controllable object SELECT...
  • Page 501: Scheme Communication Logic With Delta Based Blocking Scheme Signal Transmit Zcpsch (85)

    Section 12 1MRK 506 335-UUS A Scheme communication Section 12 Scheme communication 12.1 Scheme communication logic with delta based blocking scheme signal transmit ZCPSCH (85) 12.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Scheme communication logic with delta ZCPSCH based blocking scheme signal transmit 12.1.2...
  • Page 502: Signals

    Section 12 1MRK 506 335-UUS A Scheme communication 12.1.4 Signals Table 331: ZCPSCH (85) Input signals Name Type Default Description GROUP Current group connection SIGNAL GROUP Voltage group connection SIGNAL BLOCK BOOLEAN Block of function BLKTR BOOLEAN Block pilot (communication assisted) trip BLKCS BOOLEAN Block pilot channel start...
  • Page 503: Settings

    Section 12 1MRK 506 335-UUS A Scheme communication 12.1.5 Settings Table 333: ZCPSCH (85) Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Disable/Enable Operation Enabled SchemeType Intertrip Permissive UR Scheme type Permissive UR Permissive OR Blocking DeltaBlocking tCoord...
  • Page 504: Blocking Scheme

    Section 12 1MRK 506 335-UUS A Scheme communication for a fast trip, so its dependability is lower than that of a blocking scheme. Blocking and unblocking schemes are primarily intended for communications with on/off keying and frequency shift keying power line carrier, respectively, where internal faults can affect carrier communications.
  • Page 505: Permissive Underreaching Scheme

    Section 12 1MRK 506 335-UUS A Scheme communication The fault inception detection element detects instantaneous changes in any phase currents or zero sequence current in combination with a change in the corresponding phase voltage or zero sequence voltage. The criterion for the fault inception detection is if the change of any phase voltage and current exceeds the settings DeltaV and DeltaI respectively, or if the change of zero sequence voltage and zero sequence current exceeds the settings Delta3V0,Delta3I0 respectively.
  • Page 506: Permissive Overreaching Scheme

    Section 12 1MRK 506 335-UUS A Scheme communication 12.1.6.4 Permissive overreaching scheme In a permissive overreaching scheme, a forward directed overreach measuring element (normally zone2) through the input CSOR sends a permissive signal CS to the remote end if a fault is detected in forward direction. The received signal CR is used to allow an overreaching zone to trip after the settable tCoord timer has elapsed.
  • Page 507: Intertrip Scheme

    Section 12 1MRK 506 335-UUS A Scheme communication CR_GUARD 0-tSecurity ANSI11000253-1-en.vsd ANSI11000253 V1 EN Figure 233: Guard singal logic with unblocking scheme and with setting Unblock = NoRestart The unblocking function can be set in three operation modes (setting Unblock): Disabled The unblocking function is out of operation No restart...
  • Page 508: Technical Data

    Section 12 1MRK 506 335-UUS A Scheme communication 12.1.7 Technical data Table 336: ZCPSCH (85) technical data Function Range or value Accuracy Scheme type Disabled Intertrip Permissive UR Permissive OR Blocking DeltaBlocking Operate voltage, Delta V (0–100)% of VBase ± 5.0% of ΔV Operate current, Delta I (0–200)% of IBase ±...
  • Page 509: Function Block

    Section 12 1MRK 506 335-UUS A Scheme communication The weak-end infeed logic is used in cases where the apparent power behind the protection can be too low to activate the distance protection function. When activated, received carrier signal together with local undervoltage criteria and no reverse zone operation gives an instantaneous three-phase trip.
  • Page 510: Settings

    Section 12 1MRK 506 335-UUS A Scheme communication Name Type Default Description BLKZ BOOLEAN Block of trip from WEI logic through the loss of voltage (fuse-failure) function CBOPEN BOOLEAN Block of trip from WEI logic by an open breaker BOOLEAN POTT or Unblock carrier receive for WEI logic Table 338: ZCRWPSCH (85) Output signals...
  • Page 511: Operation Principle

    Section 12 1MRK 506 335-UUS A Scheme communication 12.2.6 Operation principle 12.2.6.1 Current reversal logic The current reversal logic can be enabled by setting the parameter CurrRev = On. The current reversal logic uses a reverse zone connected to the input IRV to recognize the fault on the parallel line in any of the phases.When the reverse zone has been activated (even if only for a short time), it prevents sending of a communication signal and tripping through the scheme communication logic after a settable time tPickUpRev.
  • Page 512 Section 12 1MRK 506 335-UUS A Scheme communication • No active signal present on the input BLOCK. • The functional input CRL is active. This input is usually connected to the CRL output on the scheme communication logic ZCPSCH (85). •...
  • Page 513: Technical Data

    Section 12 1MRK 506 335-UUS A Scheme communication WEI = Echo&Trip ECHOL - cont. CBOPEN STV_AG 100 ms STV_BG STV_CG 15 ms TRWEI 15 ms 15 ms ANSI09000012-2-en.vsd ANSI09000012 V2 EN Figure 237: Tripping part of the WEI logic, simplified diagram 12.2.7 Technical data Table 341:...
  • Page 514: Current Reversal And Wei Logic For Distance Protection Phase Segregated Zcwspsch (85)

    Section 12 1MRK 506 335-UUS A Scheme communication 12.3 Current reversal and WEI logic for distance protection phase segregated ZCWSPSCH (85) 12.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current reversal and WEI logic for ZCWSPSCH distance protection phase segregated 12.3.2...
  • Page 515: Signals

    Section 12 1MRK 506 335-UUS A Scheme communication 12.3.4 Signals Table 342: ZCWSPSCH (85) Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL BLOCK BOOLEAN Block of function IFWD BOOLEAN A signal that indicates a forward fault has been detected and will block tripping if there was a pre-existing reverse fault condition (IREV) IREV...
  • Page 516: Operation Principle

    Section 12 1MRK 506 335-UUS A Scheme communication Name Values (Range) Unit Step Default Description Disabled Disabled Operating mode of WEI logic Echo Echo & Trip tPickUpWEI 0.000 - 60.000 0.001 0.010 Coordination time for the WEI logic PU27PP 10 - 90 Phase to Phase voltage for detection of fault condition PU27PN...
  • Page 517: Weak-End Infeed Logic

    Section 12 1MRK 506 335-UUS A Scheme communication 12.3.6.2 Weak-end infeed logic The weak-end infeed logic (WEI) function trip and sends back (echoes) the received signal under the condition that no fault has been detected on the weak-end by different fault detection elements (distance protection in forward and reverse direction).
  • Page 518: Technical Data

    Section 12 1MRK 506 335-UUS A Scheme communication WEI = Echo&Trip ECHOL - cont. CBOPEN STV_AG TRWEI STV_BG 100ms STV_CG TRWEI_A 15ms TRWEI_B 15ms TRWEI_C 15ms ZCWSPSCH_Tripping_pa rt_of_the_WEI_logic_simp lified_diagram=ANSI1000 0261=1=en=Original.vsd ANSI10000261 V2 EN Figure 241: Tripping part of the WEI logic, simplified diagram 12.3.7 Technical data Table 346:...
  • Page 519: Local Acceleration Logic Zclcplal

    Section 12 1MRK 506 335-UUS A Scheme communication 12.4 Local acceleration logic ZCLCPLAL 12.4.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Local acceleration logic ZCLCPLAL 12.4.2 Functionality To achieve fast clearing of faults on the whole line, when no communication channel is available, local acceleration logic ZCLCPLAL can be used.
  • Page 520: Settings

    Section 12 1MRK 506 335-UUS A Scheme communication Name Type Default Description EXACC BOOLEAN Connected to function used for tripping at zone extension BOOLEAN Breaker Close LLACC BOOLEAN Connected to function used for tripping at loss of load Table 348: ZCLCPLAL Output signals Name Type...
  • Page 521: Operation Principle

    Section 12 1MRK 506 335-UUS A Scheme communication 12.4.6 Operation principle 12.4.6.1 Zone extension The overreaching zone is connected to the input EXACC. For this reason, configure the ARREADY functional input to a READY functional output of a used autoreclosing function or via the selected binary input to an external autoreclosing device, see figure 243.
  • Page 522: Technical Data

    Section 12 1MRK 506 335-UUS A Scheme communication to trip "instantaneously" during a fault condition when one or two of the phase currents will become low due to a three-phase trip at the opposite IED, see figure 244. The current measurement is performed internally and the internal STILL signal becomes logical one under the described conditions.
  • Page 523: Functionality

    Section 12 1MRK 506 335-UUS A Scheme communication 12.5.2 Functionality To achieve fast fault clearance of ground faults on the part of the line not covered by the instantaneous step of the residual overcurrent protection, the directional residual overcurrent protection can be supported with a logic that uses communication channels. In the directional scheme, information of the fault current direction must be transmitted to the other line end.
  • Page 524: Settings

    Section 12 1MRK 506 335-UUS A Scheme communication Name Type Default Description CSUR BOOLEAN Signal to be used for channel start with underreaching pilot schemes BOOLEAN Channel receive input signal from communications apparatus/module for pilot communication scheme logic CR_GUARD BOOLEAN Carrier channel guard input signal Table 353: ECPSCH (85) Output signals...
  • Page 525: Operation Principle

    Section 12 1MRK 506 335-UUS A Scheme communication 12.5.6 Operation principle The four step directional residual overcurrent protection EF4PTOC (51N/67N) is configured to give input information, that is directional fault detection signals, to the ECPSCH (85) logic: • Input signal PLTR_CRD is used for tripping of the communication scheme, normally the pickup signal of a forward overreaching step of PUFW.
  • Page 526: Permissive Under/Overreaching Scheme

    Section 12 1MRK 506 335-UUS A Scheme communication CS_STOP BLOCK TRIP 0-tCoord 25ms PLTR_CRD 50ms ANSI05000448-1-en.vsd ANSI05000448 V1 EN Figure 246: Simplified logic diagram for blocking scheme 12.5.6.2 Permissive under/overreaching scheme In the permissive scheme the forward directed ground-fault measuring element sends a permissive signal to the other end, if a ground fault is detected in the forward direction.
  • Page 527: Unblocking Scheme

    Section 12 1MRK 506 335-UUS A Scheme communication measurement element will be used as sending criterion of the permissive input signal CSUR. In the overreaching alternative, an overreaching directional residual overcurrent measurement element will be used as sending criterion of the permissive input signal CSOR.
  • Page 528: Technical Data

    Section 12 1MRK 506 335-UUS A Scheme communication 0-tSecurity CR_GUARD 150 ms 200 ms en05000746_ansi.vsd ANSI05000746 V1 EN Figure 247: Guard signal logic with unblocking scheme The unblocking function can be set in three operation modes (setting Unblock): Disabled: The unblocking function is out of operation tSecurity will be ignored No restart: Communication failure shorter than...
  • Page 529: Current Reversal And Weak-End Infeed Logic For Residual Overcurrent Protection Ecrwpsch (85)

    Section 12 1MRK 506 335-UUS A Scheme communication 12.6 Current reversal and weak-end infeed logic for residual overcurrent protection ECRWPSCH (85) 12.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current reversal and weak-end infeed ECRWPSCH logic for residual overcurrent protection 12.6.2...
  • Page 530: Function Block

    Section 12 1MRK 506 335-UUS A Scheme communication 12.6.3 Function block ECRWPSCH (85) V3P* IRVL BLOCK TRWEI IFWD ECHO IREV WEIBLK1 WEIBLK2 LOVBZ CBOPEN ANSI09000006-1-en.vsd ANSI09000006 V1 EN Figure 248: ECRWPSCH (85) function block 12.6.4 Signals Table 357: ECRWPSCH (85) Input signals Name Type Default...
  • Page 531: Settings

    Section 12 1MRK 506 335-UUS A Scheme communication 12.6.5 Settings Table 359: ECRWPSCH (85) Group settings (basic) Name Values (Range) Unit Step Default Description CurrRev Disabled Disabled Operating mode of Current Reversal Logic Enabled tPickUpRev 0.000 - 60.000 0.001 0.020 Pickup time for current reversal logic tDelayRev 0.000 - 60.000...
  • Page 532: Weak-End Infeed Logic

    Section 12 1MRK 506 335-UUS A Scheme communication Figure 249. The logic is now ready to handle a current reversal without tripping. The output signal IRVL will be connected to the block input on the permissive overreaching scheme. When the fault current is reversed on the healthy line, IRV is deactivated and IRVBLK is activated.
  • Page 533: Technical Data

    Section 12 1MRK 506 335-UUS A Scheme communication With the Echo & Trip setting, the logic sends an echo according to above. Further, it activates the TRWEI signal to trip the breaker if the echo conditions are fulfilled and the neutral point voltage is above the set operate value for 3V0PU.
  • Page 535: Tripping Logic Common 3-Phase Output Smpptrc (94)

    Section 13 1MRK 506 335-UUS A Logic Section 13 Logic 13.1 Tripping logic common 3-phase output SMPPTRC (94) 13.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Tripping logic common 3-phase output SMPPTRC I->O SYMBOL-K V1 EN 13.1.2 Functionality A function block for protection tripping is provided for each circuit breaker involved in...
  • Page 536: Signals

    Section 13 1MRK 506 335-UUS A Logic 13.1.4 Signals Table 362: SMPPTRC (94) Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRINP_3P BOOLEAN Trip all phases SETLKOUT BOOLEAN Input for setting the circuit breaker lockout function RSTLKOUT BOOLEAN Input for resetting the circuit breaker lockout function Table 363:...
  • Page 537: Technical Data

    Section 13 1MRK 506 335-UUS A Logic routed. It has a single trip output (TRIP) for connection to one or more of the IEDs binary outputs, as well as to other functions within the IED requiring this signal. ANSI05000789 V2 EN Figure 253: Simplified logic diagram for three pole trip In multi-breaker arrangements, one SMPPTRC (94) function block is used for each...
  • Page 538: Tripping Logic Phase Segregated Output Sptptrc 94

    Section 13 1MRK 506 335-UUS A Logic 13.2 Tripping logic phase segregated output SPTPTRC 94 13.2.1 Identification Function description IEC 61850 identification IEC 60617 identification ANSI/IEEE C37.2 device number Tripping logic phase SPTPTRC segregated output I->O SYMBOL-K V1 EN 13.2.2 Functionality A function block for protection tripping is provided for each circuit breaker involved in the tripping of the fault.
  • Page 539: Signals

    Section 13 1MRK 506 335-UUS A Logic 13.2.4 Signals Table 367: SPTPTRC (94) Input signals Name Type Default Description BLOCK BOOLEAN Block of function TRINP_3P BOOLEAN Trip all phases TRINP_A BOOLEAN Trip phase A TRINP_B BOOLEAN Trip phase B TRINP_C BOOLEAN Trip phase C PS_A...
  • Page 540: Operation Principle

    Section 13 1MRK 506 335-UUS A Logic Table 370: SPTPTRC (94) Group settings (advanced) Name Values (Range) Unit Step Default Description TripLockout Disabled Disabled On: Activate output (CLLKOUT) and trip latch, Enabled Off: Only output AutoLock Disabled Disabled On: Lockout from input (SETLKOUT) and trip, Enabled Off: Only input 13.2.6...
  • Page 541 Section 13 1MRK 506 335-UUS A Logic The SPTPTRC (94) function is equipped with logic, which secures correct operation for evolving faults as well as for reclosing on to persistent faults. A special input P3PTR is also provided which disables single pole tripping, forcing all tripping to be three-pole. See figure 256.
  • Page 542 Section 13 1MRK 506 335-UUS A Logic ATRIP 150 ms INTL_ATRIP 2000 ms BTRIP 150 ms INTL_BTRIP 2000 ms 150 ms CTRIP INTL_CTRIP 2000 ms BLOCK P3PTR -loop ANSI10000268-2-en.vsd ANSI10000268 V2 EN Figure 257: Additional logic for the 1ph/3ph operating mode The expanded SPTPTRC (94) function has three trip outputs TR_A, TR_B, TR_C (besides the trip output TRIP), one per phase, for connection to one or more of the IEDs binary outputs, as well as to other functions within the IED requiring these signals.
  • Page 543: Technical Data

    Section 13 1MRK 506 335-UUS A Logic TR_A ATRIP TR_B BTRIP TR_C CTRIP TRIP RSTTRIP TR3P -loop TR1P 10 ms ANSI10000269-2-en.vsd ANSI10000269 V2 EN Figure 258: Final tripping circuits 13.2.7 Technical data Table 371: SPTPTRC (94) technical data Function Range or value Accuracy Trip action 3-Ph, 1/3-Ph...
  • Page 544: Function Block

    Section 13 1MRK 506 335-UUS A Logic TMAGGIO 3 output signals and the physical outputs allows the user to adapt the signals to the physical tripping outputs according to the specific application needs for settable pulse or steady output. 13.3.3 Function block TMAGGIO INPUT1...
  • Page 545 Section 13 1MRK 506 335-UUS A Logic Name Type Default Description INPUT7 BOOLEAN Binary input 7 INPUT8 BOOLEAN Binary input 8 INPUT9 BOOLEAN Binary input 9 INPUT10 BOOLEAN Binary input 10 INPUT11 BOOLEAN Binary input 11 INPUT12 BOOLEAN Binary input 12 INPUT13 BOOLEAN Binary input 13...
  • Page 546: Settings

    Section 13 1MRK 506 335-UUS A Logic 13.3.5 Settings Table 374: TMAGGIO Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Operation Disable / Enable Enabled PulseTime 0.050 - 60.000 0.001 0.150 Output pulse time OnDelay 0.000 - 60.000 0.001 0.000...
  • Page 547: Configurable Logic Blocks

    Section 13 1MRK 506 335-UUS A Logic PulseTime ModeOutput1=Pulsed Input 1 Output 1 On Delay Time 1 Off Delay Time 1 PulseTime ModeOutput2=Pulsed Input 17 Output 2 On Delay Time 2 Off Delay Time 2 PulseTime ModeOutput3=Pulsed Output 3 On Delay Time 3 Off Delay Time 3 ANSI11000290-1-en.vsd ANSI11000290 V1 EN...
  • Page 548 Section 13 1MRK 506 335-UUS A Logic • INVERTER function blocks that inverts the input signal. • PULSETIMER function block can be used, for example, for pulse extensions or limiting of operation of outputs, settable pulse time. • GATE function block is used for whether or not a signal should be able to pass from the input to the output.
  • Page 549 Section 13 1MRK 506 335-UUS A Logic • INVERTERQT function block that inverts the input signal and propagates timestamp and quality of input signal. • PULSETIMERQT Pulse timer function block can be used, for example, for pulse extensions or limiting of operation of outputs. The function also propagates timestamp and quality of input signal.
  • Page 550: Or Function Block

    Section 13 1MRK 506 335-UUS A Logic is copied to TIME output. Quality bits in common part and indication part of inputs signal is copied to the corresponding quality output. 13.4.1.2 OR function block Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification...
  • Page 551: Inverter Function Block Inverter

    Section 13 1MRK 506 335-UUS A Logic Table 376: OR Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 13.4.1.3 Inverter function block INVERTER Identification...
  • Page 552: Pulsetimer Function Block

    Section 13 1MRK 506 335-UUS A Logic 13.4.1.4 PULSETIMER function block Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number PULSETIMER function block PULSETIMER Functionality The pulse function can be used, for example for pulse extensions or limiting of operation of outputs.
  • Page 553: Controllable Gate Function Block Gate

    Section 13 1MRK 506 335-UUS A Logic 13.4.1.5 Controllable gate function block GATE Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Controllable gate function block GATE Functionality The GATE function block is used for controlling if a signal should pass from the input to the output or not, depending on setting.
  • Page 554: Exclusive Or Function Block Xor

    Section 13 1MRK 506 335-UUS A Logic 13.4.1.6 Exclusive OR function block XOR Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Exclusive OR function block Functionality The exclusive OR function (XOR) is used to generate combinatory expressions with boolean variables.
  • Page 555: Loop Delay Function Block Loopdelay

    Section 13 1MRK 506 335-UUS A Logic 13.4.1.7 Loop delay function block LOOPDELAY Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Logic loop delay function block LOOPDELAY The Logic loop delay function block (LOOPDELAY) function is used to delay the output signal one execution cycle.
  • Page 556 Section 13 1MRK 506 335-UUS A Logic Functionality The function block TIMERSET has pick-up and drop-out delayed outputs related to the input signal. The timer has a settable time delay (t). Input tdelay tdelay en08000289-2-en.vsd IEC08000289 V1 EN Figure 267: TIMERSET Status diagram Function block TIMERSET...
  • Page 557: And Function Block

    Section 13 1MRK 506 335-UUS A Logic Settings Table 391: TIMERSET Group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled 0.000 - 90000.000 0.001 0.000 Delay for settable timer n 13.4.1.9 AND function block Identification Function description IEC 61850...
  • Page 558: Set-Reset Memory Function Block Srmemory

    Section 13 1MRK 506 335-UUS A Logic Table 393: AND Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 13.4.1.10 Set-reset memory function block SRMEMORY Identification...
  • Page 559: Reset-Set With Memory Function Block Rsmemory

    Section 13 1MRK 506 335-UUS A Logic Signals Table 395: SRMEMORY Input signals Name Type Default Description BOOLEAN Input signal to set RESET BOOLEAN Input signal to reset Table 396: SRMEMORY Output signals Name Type Description BOOLEAN Output signal NOUT BOOLEAN Inverted output signal Settings...
  • Page 560 Section 13 1MRK 506 335-UUS A Logic Table 398: Truth table for RSMEMORY function block RESET NOUT Last Inverted last value value Function block RSMEMORY RESET NOUT IEC09000294-1-en.vsd IEC09000294 V1 EN Figure 271: RSMEMORY function block Signals Table 399: RSMEMORY Input signals Name Type Default...
  • Page 561: Technical Data

    Section 13 1MRK 506 335-UUS A Logic 13.4.2 Technical data Table 402: Configurable logic blocks Logic block Quantity Range or value Accuracy with cycle time 5 ms 20 ms 100 ms INVERTER SRMEMORY RSMEMORY GATE PULSETIMER (0.000– ± 0.5% ± 25 ms for 20 90000.000) s ms cycle time TIMERSET...
  • Page 562: Fixed Signals Fxdsign

    Section 13 1MRK 506 335-UUS A Logic 13.5 Fixed signals FXDSIGN 13.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Fixed signals FXDSIGN 13.5.2 Functionality The Fixed signals function FXDSIGN generates nine pre-set (fixed) signals that can be used in the configuration of an IED, either for forcing the unused inputs in other function blocks to a certain level/value, or for creating certain logic.
  • Page 563: Settings

    Section 13 1MRK 506 335-UUS A Logic Name Type Description STRNULL STRING String signal with no characters ZEROSMPL GROUP SIGNAL Channel id for zero sample GRP_OFF GROUP SIGNAL Group signal fixed off 13.5.5 Settings The function does not have any settings available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 564: Function Block

    Section 13 1MRK 506 335-UUS A Logic 13.6.3 Function block B16I BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000035-1-en.vsd IEC09000035 V1 EN Figure 273: B16I function block 13.6.4 Signals Table 405: B16I Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 565: Settings

    Section 13 1MRK 506 335-UUS A Logic Table 406: B16I Output signals Name Type Description INTEGER Output value 13.6.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.6.6 Monitored data Table 407: B16I Monitored data Name...
  • Page 566: Boolean 16 To Integer Conversion With Logic Node Representation B16Ifcvi

    Section 13 1MRK 506 335-UUS A Logic Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 7 BOOLEAN Input 8 BOOLEAN Input 9 IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12 2048 IN13 BOOLEAN...
  • Page 567: Function Block

    Section 13 1MRK 506 335-UUS A Logic 13.7.3 Function block B16IFCVI BLOCK IN10 IN11 IN12 IN13 IN14 IN15 IN16 IEC09000624-1-en.vsd IEC09000624 V1 EN Figure 274: B16IFCVI function block 13.7.4 Signals Table 408: B16IFCVI Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN...
  • Page 568: Settings

    Section 13 1MRK 506 335-UUS A Logic Table 409: B16IFCVI Output signals Name Type Description INTEGER Output value 13.7.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.7.6 Monitored data Table 410: B16IFCVI Monitored data Name...
  • Page 569: Integer To Boolean 16 Conversion Ib16A

    Section 13 1MRK 506 335-UUS A Logic Name of input Type Default Description Value when Value when activated deactivated BOOLEAN Input 6 BOOLEAN Input 7 BOOLEAN Input 8 BOOLEAN Input 9 IN10 BOOLEAN Input 10 IN11 BOOLEAN Input 11 1024 IN12 BOOLEAN Input 12...
  • Page 570: Function Block

    Section 13 1MRK 506 335-UUS A Logic 13.8.3 Function block IB16A BLOCK OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8 OUT9 OUT10 OUT11 OUT12 OUT13 OUT14 OUT15 OUT16 IEC09000036-1-en.vsd IEC09000036 V1 EN Figure 275: IB16A function block 13.8.4 Signals Table 411: IB16A Input signals Name Type...
  • Page 571: Settings

    Section 13 1MRK 506 335-UUS A Logic Name Type Description OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 13.8.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.8.6 Operation principle With integer 15 on the input INP the OUT1 = OUT2 = OUT3= OUT4 =1 and the...
  • Page 572: Integer To Boolean 16 Conversion With Logic Node Representation Ib16Fcvb

    Section 13 1MRK 506 335-UUS A Logic Name of OUTx Type Description Value when Value when activated deactivated OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN Output 5 OUT6 BOOLEAN Output 6 OUT7 BOOLEAN...
  • Page 573: Function Block

    Section 13 1MRK 506 335-UUS A Logic IB16FCVB function can receive remote values over IEC61850 when the operator position input PSTO is in position remote. The block input will freeze the output at the last value. 13.9.3 Function block IB16FCVB BLOCK OUT1 PSTO...
  • Page 574: Settings

    Section 13 1MRK 506 335-UUS A Logic Name Type Description OUT10 BOOLEAN Output 10 OUT11 BOOLEAN Output 11 OUT12 BOOLEAN Output 12 OUT13 BOOLEAN Output 13 OUT14 BOOLEAN Output 14 OUT15 BOOLEAN Output 15 OUT16 BOOLEAN Output 16 13.9.5 Settings The function does not have any parameters available in local HMI or Protection and Control IED Manager (PCM600) 13.9.6...
  • Page 575: Elapsed Time Integrator With Limit Transgression And Overflow Supervision Teiggio

    Section 13 1MRK 506 335-UUS A Logic Table 415: Outputs and their values when activated Name of OUTx Type Description Value when Value when activated deactivated OUT1 BOOLEAN Output 1 OUT2 BOOLEAN Output 2 OUT3 BOOLEAN Output 3 OUT4 BOOLEAN Output 4 OUT5 BOOLEAN...
  • Page 576: Functionality

    Section 13 1MRK 506 335-UUS A Logic 13.10.2 Functionality Elapsed Time Integrator (TEIGGIO) function is a function that accumulates the elapsed time when a given binary signal has been high. The main features of TEIGGIO are • Applicable to long time integration (≤999 999.9 seconds). •...
  • Page 577: Settings

    Section 13 1MRK 506 335-UUS A Logic Table 417: TEIGGIO Output signals Name Type Description WARNING BOOLEAN Indicator of the integrated time has reached the warning limit ALARM BOOLEAN Indicator of the integrated time has reached the alarm limit OVERFLOW BOOLEAN Indicator of the integrated time has reached the overflow limit...
  • Page 578 Section 13 1MRK 506 335-UUS A Logic Loop Delay tOverflow tWarning OVERFLOW tAlarm WARNING Transgression Supervision Plus Retain ALARM BLOCK RESET ACCTIME Time Integration Loop Delay IEC12000195-2-en.vsd IEC12000195 V2 EN Figure 278: TEIGGIO Simplified logic TEIGGIO main functionalities are • integrate the elapsed time when IN has been high •...
  • Page 579: Operation Accuracy

    Section 13 1MRK 506 335-UUS A Logic tAlarm and tWarning are user settable limits. They are also independent, that is, there is no check if tAlarm > tWarning. tAlarm and tWarning are possible to be defined with a resolution of 10 ms, depending on the level of the defined values for the parameters.
  • Page 581: Measurements

    Section 14 1MRK 506 335-UUS A Monitoring Section 14 Monitoring 14.1 Measurements 14.1.1 Functionality Measurement functions is used for power system measurement, supervision and reporting to the local HMI, monitoring tool within PCM600 or to station level for example, via IEC 61850.
  • Page 582: Measurements Cvmmxn

    Section 14 1MRK 506 335-UUS A Monitoring • P, Q and S: three phase active, reactive and apparent power • PF: power factor • V: phase-to-phase voltage magnitude • I: phase current magnitude • F: power system frequency The output values are displayed in the local HMI under Main menu/Tests/Function status/Monitoring/CVMMXN/Outputs The measuring functions CMMXU, VNMMXU and VMMXU provide physical quantities:...
  • Page 583: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring 14.1.2.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600. CVMMXN I3P* V3P* S_RANGE P_INST P_RANGE Q_INST Q_RANGE PF_RANGE ILAG ILEAD V_RANGE...
  • Page 584: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Name Type Description REAL Power factor magnitude of deadband value PF_RANGE INTEGER Power factor range ILAG BOOLEAN Current is lagging voltage ILEAD BOOLEAN Current is leading voltage REAL Calculated voltage magnitude of deadband value U_RANGE INTEGER Calcuated voltage range...
  • Page 585 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description PMax -2000.0 - 2000.0 200.0 Maximum value in % of SBase PRepTyp Cyclic Cyclic Reporting type Dead band Int deadband QMin -2000.0 - 2000.0 -200.0 Minimum value in % of SBase QMax -2000.0 - 2000.0 200.0...
  • Page 586 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description PDbRepInt 1 - 300 Type Cycl: Report interval (s), Db: In % of range, Int Db: In %s PZeroDb 0 - 100000 Zero point clamping PHiLim -2000.0 - 2000.0 120.0 High limit in % of SBase...
  • Page 587: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description IHiHiLim 0.0 - 500.0 150.0 High High limit in % of IBase IHiLim 0.0 - 500.0 120.0 High limit in % of IBase ILowLim 0.0 - 500.0 80.0 Low limit in % of IBase ILowLowLim...
  • Page 588: Phase Current Measurement Cmmxu

    Section 14 1MRK 506 335-UUS A Monitoring Name Type Values (Range) Unit Description REAL Power factor magnitude of deadband value REAL Calculated voltage magnitude of deadband value REAL Calculated current magnitude of deadband value REAL System frequency magnitude of deadband value 14.1.3 Phase current measurement CMMXU 14.1.3.1...
  • Page 589: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Table 426: CMMXU Output signals Name Type Description REAL IA Amplitude IA_RANGE INTEGER Phase A current magnitude range IA_ANGL REAL IA Angle REAL IB Amplitude IB_RANGE INTEGER Phase B current magnitude range IB_ANGL REAL IB Angle REAL...
  • Page 590: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description IMagComp5 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 5% of In IMagComp30 -10.000 - 10.000 0.001 0.000 Magnitude factor to calibrate current at 30% of IMagComp100 -10.000 - 10.000 0.001...
  • Page 591: Signals

    Section 14 1MRK 506 335-UUS A Monitoring VMMXU V3P* V_AB VAB_RANG VAB_ANGL V_BC VBC_RANG VBC_ANGL V_CA VCA_RANG VCA_ANGL ANSI08000223-1-en.vsd ANSI08000223 V1 EN Figure 281: VMMXU function block 14.1.4.3 Signals Table 430: VMMXU Input signals Name Type Default Description GROUP Three phase group signal for voltage inputs SIGNAL Table 431: VMMXU Output signals...
  • Page 592: Settings

    Section 14 1MRK 506 335-UUS A Monitoring 14.1.4.4 Settings Table 432: VMMXU Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disable / Enable Enabled GlobalBaseSel 1 - 6 Selection of one of the Global Base Value groups VLDbRepInt 1 - 300...
  • Page 593: Current Sequence Component Measurement Cmsqi

    Section 14 1MRK 506 335-UUS A Monitoring 14.1.5 Current sequence component measurement CMSQI 14.1.5.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Current sequence component CMSQI measurement I1, I2, I0 SYMBOL-VV V1 EN 14.1.5.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 594: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Name Type Description I1RANG INTEGER I1Amplitude range I1ANGL REAL I1 Angle REAL I2 Amplitude I2RANG INTEGER I2 Magnitude range I2ANGL REAL I2Angle 14.1.5.4 Settings Table 437: CMSQI Non group settings (basic) Name Values (Range) Unit Step Default...
  • Page 595: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring Table 438: CMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3I0ZeroDb 0 - 100000 Zero point clamping 3I0HiHiLim 0 - 500000 3600 High High limit (physical value) 3I0HiLim 0 - 500000 3300 High limit (physical value) 3I0LowLim...
  • Page 596: Voltage Sequence Measurement Vmsqi

    Section 14 1MRK 506 335-UUS A Monitoring 14.1.6 Voltage sequence measurement VMSQI 14.1.6.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Voltage sequence measurement VMSQI U1, U2, U0 SYMBOL-TT V1 EN 14.1.6.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 597: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Name Type Description V1RANG INTEGER V1 Magnitude range V1ANGL REAL U1 Angle REAL U2 Amplitude V2RANG INTEGER V2 Magnitude range V2ANGL REAL U2 Angle 14.1.6.4 Settings Table 442: VMSQI Non group settings (basic) Name Values (Range) Unit...
  • Page 598: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring Table 443: VMSQI Non group settings (advanced) Name Values (Range) Unit Step Default Description 3V0ZeroDb 0 - 100000 Zero point clamping 3V0HiHiLim 0 - 2000000 288000 High High limit (physical value) 3V0HiLim 0 - 2000000 258000 High limit (physical value) 3V0LowLim...
  • Page 599: Phase-Neutral Voltage Measurement Vnmmxu

    Section 14 1MRK 506 335-UUS A Monitoring 14.1.7 Phase-neutral voltage measurement VNMMXU 14.1.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Phase-neutral voltage measurement VNMMXU SYMBOL-UU V1 EN 14.1.7.2 Function block The available function blocks of an IED are depending on the actual hardware (TRM) and the logic configuration made in PCM600.
  • Page 600: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Name Type Description VB_RANGE INTEGER V_B Amplitude range VB_ANGL REAL V_B Angle, magnitude of reported value REAL V_C Amplitude, magnitude of reported value VC_RANGE INTEGER V_C Amplitude range VC_ANGL REAL VC Angle, magnitude of reported value 14.1.7.4 Settings Table 447:...
  • Page 601: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring 14.1.7.5 Monitored data Table 449: VNMMXU Monitored data Name Type Values (Range) Unit Description REAL V_A Amplitude, magnitude of reported value VA_ANGL REAL V_A Angle, magnitude of reported value REAL V_B Amplitude, magnitude of reported value VB_ANGL REAL...
  • Page 602 Section 14 1MRK 506 335-UUS A Monitoring clamping might be overridden by the zero point clamping used for the measurement values within CVMMXN. Continuous monitoring of the measured quantity Users can continuously monitor the measured quantity available in each function block by means of four defined operating thresholds, see figure 285.
  • Page 603 Section 14 1MRK 506 335-UUS A Monitoring Actual value of the measured quantity The actual value of the measured quantity is available locally and remotely. The measurement is continuous for each measured quantity separately, but the reporting of the value to the higher levels depends on the selected reporting mode. The following basic reporting modes are available: •...
  • Page 604 Section 14 1MRK 506 335-UUS A Monitoring Magnitude dead-band supervision If a measuring value is changed, compared to the last reported value, and the change is larger than the ±ΔY pre-defined limits that are set by user (UDbRepIn), then the measuring channel reports the new value to a higher level.
  • Page 605: Measurements Cvmmxn

    Section 14 1MRK 506 335-UUS A Monitoring reported and set as a new base for the following measurements (as well as for the values Y3, Y4 and Y5). The integral dead-band supervision is particularly suitable for monitoring signals with small variations that can last for relatively long periods. A1 >= pre-set value A >=...
  • Page 606 Section 14 1MRK 506 335-UUS A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” A, B, C Used when three × × × phase-to-ground voltages are EQUATION1561 V1 EN available EQUATION1562 V1 EN...
  • Page 607 Section 14 1MRK 506 335-UUS A Monitoring Set value for Formula used for complex, three- Formula used for voltage and Comment parameter phase power calculation current magnitude calculation “Mode” Used when only × phase-to- = × × ground voltage is available (Equation 92) EQUATION1575 V1 EN...
  • Page 608 Section 14 1MRK 506 335-UUS A Monitoring Each analog output has a corresponding supervision level output (X_RANGE). The output signal is an integer in the interval 0-4, see section "Measurement supervision". Calibration of analog inputs Measured currents and voltages used in the CVMMXN function can be calibrated to get class 0.5 measuring accuracy.
  • Page 609 Section 14 1MRK 506 335-UUS A Monitoring measured quantity. Filtering is performed in accordance with the following recursive formula: = × × Calculated (Equation 100) EQUATION1407 V1 EN where: is a new measured value (that is P, Q, S, V, I or PF) to be given out from the function is the measured value given from the measurement function in previous execution cycle is the new calculated value in the present execution cycle Calculated...
  • Page 610: Phase Current Measurement Cmmxu

    Section 14 1MRK 506 335-UUS A Monitoring Directionality CTStartPoint defines if the CTs grounding point is located towards or from the protected object under observation. If everything is properly set power is always measured towards protection object. Busbar Protected Object ANSI05000373_2_en.vsd ANSI05000373 V2 EN Figure 290:...
  • Page 611: Phase-Phase And Phase-Neutral Voltage Measurements Vmmxu, Vnmmxu

    Section 14 1MRK 506 335-UUS A Monitoring of rated current. The compensation below 5% and above 100% is constant and linear in between, see figure 289. Phase currents (magnitude and angle) are available on the outputs and each magnitude output has a corresponding supervision level output (Ix_RANGE). The supervision output signal is an integer in the interval 0-4, see section "Measurement supervision".
  • Page 612: Event Counter Cntggio

    Section 14 1MRK 506 335-UUS A Monitoring Function Range or value Accuracy Reactive power, Q 0.1 x V < V < 1.5 x V ± 1.0% of S at S ≤ S 0.2 x I < I < 4.0 x I ±...
  • Page 613: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.2.4 Signals Table 451: CNTGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function COUNTER1 BOOLEAN Input for counter 1 COUNTER2 BOOLEAN Input for counter 2 COUNTER3 BOOLEAN Input for counter 3 COUNTER4 BOOLEAN Input for counter 4...
  • Page 614: Operation Principle

    Section 14 1MRK 506 335-UUS A Monitoring Name Type Values (Range) Unit Description VALUE4 INTEGER Output of counter 4 VALUE5 INTEGER Output of counter 5 VALUE6 INTEGER Output of counter 6 14.2.7 Operation principle Event counter (CNTGGIO) has six counter inputs. CNTGGIO stores how many times each of the inputs has been activated.
  • Page 615: Function Description

    Section 14 1MRK 506 335-UUS A Monitoring 14.3 Function description Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Limit counter L4UFCNT 14.3.1 Limit counter L4UFCNT 14.3.2 Introduction Limit counter (L4UFCNT) provides a settable counter with four independent limits where the number of positive and/or negative flanks on the input signal are counted against the setting values for limits.
  • Page 616 Section 14 1MRK 506 335-UUS A Monitoring BLOCK INPUT Operation Counter RESET VALUE Overflow CountType OVERFLOW Detection OnMaxValue LIMIT1 … 4 Limit MaxValue Check CounterLimit1...4 ERROR Error Detection InitialValue IEC12000625_1_en.vsd IEC12000625 V1 EN Figure 292: Logic diagram The counter can be initialized to count from a settable non-zero value after reset of the function.
  • Page 617: Reporting

    Section 14 1MRK 506 335-UUS A Monitoring The Error output is activated as an indicator of setting the counter limits and/or initial value setting(s) greater than the maximum value. The counter stops counting the input and all the outputs except the error output remains at zero state. The error condition remains until the correct settings for counter limits and/or initial value setting(s) are applied.
  • Page 618: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Table 457: L4UFCNT Output signals Name Type Description ERROR BOOLEAN Error indication on counter limit and/or initial value settings OVERFLOW BOOLEAN Overflow indication on count of greater than MaxValue LIMIT1 BOOLEAN Counted value is larger than or equal to CounterLimit1 LIMIT2 BOOLEAN Counted value is larger than or equal to CounterLimit2...
  • Page 619: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring 14.3.8 Technical data Table 460: L4UFCNTtechnical data Function Range or value Accuracy Counter value 0-65535 Max. count up speed 5-160 pulses/s 14.4 Disturbance report 14.4.1 Functionality Complete and reliable information about disturbances in the primary and/or in the secondary system together with continuous event-logging is accomplished by the disturbance report functionality.
  • Page 620: Disturbance Report Drprdre

    Section 14 1MRK 506 335-UUS A Monitoring 14.4.2 Disturbance report DRPRDRE 14.4.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Disturbance report DRPRDRE 14.4.2.2 Function block DRPRDRE DRPOFF RECSTART RECMADE CLEARED MEMUSED IEC09000346-1-en.vsd IEC09000346 V1 EN Figure 294: DRPRDRE function block 14.4.2.3...
  • Page 621: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description PostRetrig Disabled Disabled Post-fault retrig enabled (On) or not (Off) Enabled MaxNoStoreRec 10 - 100 Maximum number of stored disturbances ZeroAngleRef 1 - 30 Trip value recorder, phasor reference channel OpModeTest Disabled Disabled...
  • Page 622 Section 14 1MRK 506 335-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh8 BOOLEAN Over level trig for analog channel 8 activated UnTrigStatCh9 BOOLEAN Under level trig for analog channel 9 activated OvTrigStatCh9 BOOLEAN Over level trig for analog channel 9 activated UnTrigStatCh10 BOOLEAN...
  • Page 623 Section 14 1MRK 506 335-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh19 BOOLEAN Over level trig for analog channel 19 activated UnTrigStatCh20 BOOLEAN Under level trig for analog channel 20 activated OvTrigStatCh20 BOOLEAN Over level trig for analog channel 20 activated UnTrigStatCh21 BOOLEAN...
  • Page 624 Section 14 1MRK 506 335-UUS A Monitoring Name Type Values (Range) Unit Description OvTrigStatCh30 BOOLEAN Over level trig for analog channel 30 activated UnTrigStatCh31 BOOLEAN Under level trig for analog channel 31 activated OvTrigStatCh31 BOOLEAN Over level trig for analog channel 31 activated UnTrigStatCh32 BOOLEAN...
  • Page 625: Analog Input Signals Axradr

    Section 14 1MRK 506 335-UUS A Monitoring 14.4.3 Analog input signals AxRADR 14.4.3.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Analog input signals A1RADR Analog input signals A2RADR Analog input signals A3RADR 14.4.3.2 Function block A1RADR ^GRPINPUT1 ^GRPINPUT2...
  • Page 626: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Table 464: A1RADR Input signals Name Type Default Description GRPINPUT1 GROUP Group signal for input 1 SIGNAL GRPINPUT2 GROUP Group signal for input 2 SIGNAL GRPINPUT3 GROUP Group signal for input 3 SIGNAL GRPINPUT4 GROUP Group signal for input 4...
  • Page 627 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description Operation05 Disabled Disabled Operation On/Off Enabled Operation06 Disabled Disabled Operation On/Off Enabled Operation07 Disabled Disabled Operation On/Off Enabled Operation08 Disabled Disabled Operation On/Off Enabled Operation09 Disabled Disabled Operation On/Off Enabled...
  • Page 628 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description FunType9 0 - 255 Function type for analog channel 9 (IEC-60870-5-103) InfNo9 0 - 255 Information number for analog channel 9 (IEC-60870-5-103) FunType10 0 - 255 Function type for analog channel 10 (IEC-60870-5-103) InfNo10...
  • Page 629 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp04 Disabled Disabled Use over level trigger for analog channel 4 (on) Enabled or not (off) OverTrigLe04 0 - 5000 Over trigger level for analog channel 4 in % of signal NomValue05 0.0 - 999999.9...
  • Page 630: Analog Input Signals A4Radr

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe09 0 - 200 Under trigger level for analog channel 9 in % of signal OverTrigOp09 Disabled Disabled Use over level trigger for analog channel 9 (on) Enabled or not (off) OverTrigLe09...
  • Page 631: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.4.4.3 Signals Table 467: A4RADR Input signals Name Type Default Description INPUT31 REAL Analog channel 31 INPUT32 REAL Analog channel 32 INPUT33 REAL Analog channel 33 INPUT34 REAL Analog channel 34 INPUT35 REAL Analog channel 35 INPUT36 REAL...
  • Page 632 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description InfNo31 0 - 255 Information number for analog channel 31 (IEC-60870-5-103) FunType32 0 - 255 Function type for analog channel 32 (IEC-60870-5-103) InfNo32 0 - 255 Information number for analog channel 32 (IEC-60870-5-103) FunType33...
  • Page 633 Section 14 1MRK 506 335-UUS A Monitoring Table 469: A4RADR Non group settings (advanced) Name Values (Range) Unit Step Default Description NomValue31 0.0 - 999999.9 Nominal value for analog channel 31 UnderTrigOp31 Disabled Disabled Use under level trigger for analog channel 31 Enabled (on) or not (off) UnderTrigLe31...
  • Page 634 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description OverTrigOp35 Disabled Disabled Use over level trigger for analog channel 35 Enabled (on) or not (off) OverTrigLe35 0 - 5000 Over trigger level for analog channel 35 in % of signal NomValue36 0.0 - 999999.9...
  • Page 635: Binary Input Signals Bxrbdr

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description UnderTrigLe40 0 - 200 Under trigger level for analog channel 40 in % of signal OverTrigOp40 Disabled Disabled Use over level trigger for analog channel 40 Enabled (on) or not (off) OverTrigLe40...
  • Page 636: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.4.5.3 Signals B1RBDR - B6RBDR Input signals Tables for input signals for B1RBDR - B6RBDR are all similar except for INPUT and description number. • B1RBDR, INPUT1 - INPUT16 • B2RBDR, INPUT17 - INPUT32 •...
  • Page 637 Section 14 1MRK 506 335-UUS A Monitoring • B4RBDR, channel49 - channel64 • B5RBDR, channel65 - channel80 • B6RBDR, channel81 - channel96 Table 471: B1RBDR Non group settings (basic) Name Values (Range) Unit Step Default Description TrigDR01 Disabled Disabled Trigger operation On/Off Enabled SetLED01 Disabled...
  • Page 638 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigDR08 Disabled Disabled Trigger operation On/Off Enabled SetLED08 Disabled Disabled Set LED on HMI for binary channel 8 Start Trip Pick up and trip TrigDR09 Disabled Disabled Trigger operation On/Off Enabled...
  • Page 639 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigDR16 Disabled Disabled Trigger operation On/Off Enabled SetLED16 Disabled Disabled Set LED on HMI for binary channel 16 Start Trip Pick up and trip FunType1 0 - 255 Function type for binary channel 1 (IEC -60870-5-103) InfNo1...
  • Page 640 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description FunType11 0 - 255 Function type for binary channel 11 (IEC -60870-5-103) InfNo11 0 - 255 Information number for binary channel 11 (IEC -60870-5-103) FunType12 0 - 255 Function type for binary channel 12 (IEC -60870-5-103) InfNo12...
  • Page 641 Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description TrigLevel05 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope for Trig on 1 binary input 5 IndicationMa05 Hide Hide Indication mask for binary channel 5 Show TrigLevel06 Trig on 0...
  • Page 642: Operation Principle

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description IndicationMa15 Hide Hide Indication mask for binary channel 15 Show TrigLevel16 Trig on 0 Trig on 1 Trigger on positive (1) or negative (0) slope for Trig on 1 binary input 16 IndicationMa16...
  • Page 643 Section 14 1MRK 506 335-UUS A Monitoring Disturbance Report A1-4RADR A4RADR DRPRDRE Analog signals Trip value rec Fault locator Disturbance B1-6RBDR recorder Binary signals B6RBDR Sequential of events Event recorder Indications ANSI09000336-1-en.vsd ANSI09000336 V1 EN Figure 298: Disturbance report functions and related function blocks The whole disturbance report can contain information for a number of recordings, each with the data coming from all the parts mentioned above.
  • Page 644: Disturbance Information

    Section 14 1MRK 506 335-UUS A Monitoring number of analog and binary channels and recording time. In a 60 Hz system it is possible to record 80 where the maximum recording time is 3.4 seconds. The memory limit does not affect the rest of the disturbance report (Sequential of events, Event recorder, Indications and Trip value recorder).
  • Page 645: Trip Value Recorder

    Section 14 1MRK 506 335-UUS A Monitoring 14.4.6.5 Trip value recorder The recorded trip values include phasors of selected analog signals before the fault and during the fault, see Trip value recorder section for detailed information. 14.4.6.6 Disturbance recorder Disturbance recorder records analog and binary signal data before, during and after the fault, see Disturbance recorder section for detailed information.
  • Page 646: Analog Signals

    Section 14 1MRK 506 335-UUS A Monitoring Trig point TimeLimit PreFaultRecT PostFaultRecT en05000487.vsd IEC05000487 V1 EN Figure 300: The recording times definition PreFaultRecT, 1 Pre-fault or pre-trigger recording time. The time before the fault including the operate time PreFaultRecT to set this time. of the trigger.
  • Page 647 Section 14 1MRK 506 335-UUS A Monitoring SMAI A1RADR GRPNAME AI3P A2RADR AI1NAME GRPINPUT1 A3RADR External analog AI2NAME GRPINPUT2 signals AI3NAME GRPINPUT3 AI4NAME GRPINPUT4 GRPINPUT5 GRPINPUT6 A4RADR INPUT31 INPUT32 INPUT33 Internal analog signals INPUT34 INPUT35 INPUT36 INPUT40 en05000653-2.vsd IEC05000653 V2 EN Figure 301: Analog input function blocks The external input signals will be acquired, filtered and skewed and (after configuration)
  • Page 648: Binary Signals

    Section 14 1MRK 506 335-UUS A Monitoring If Operation = Disabled, no waveform (samples) will be recorded and reported in graph. However, Trip value, pre-fault and fault value will be recorded and reported. The input channel can still be used to trig the disturbance recorder. If Operation = Enabled, waveform (samples) will also be recorded and reported in graph.
  • Page 649: Post Retrigger

    Section 14 1MRK 506 335-UUS A Monitoring Manual trigger A disturbance report can be manually triggered from the local HMI, PCM600 or via station bus (IEC 61850). When the trigger is activated, the manual trigger signal is generated. This feature is especially useful for testing. Binary-signal trigger Any binary signal state (logic one or a logic zero) can be selected to generate a trigger (Triglevel = Trig on 0/Trig on 1).
  • Page 650: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring Disturbance report function can handle maximum 3 simultaneous disturbance recordings. 14.4.7 Technical data Table 473: DRPRDRE technical data Function Range or value Accuracy Current recording ± 1,0% of I at I ≤ I ±...
  • Page 651: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring changed status during a disturbance. This information is used in the short perspective to get information via the local HMI in a straightforward way. There are three LEDs on the local HMI (green, yellow and red), which will display status information about the IED and the Disturbance recorder function (triggered).
  • Page 652: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring The indication function tracks 0 to 1 changes of binary signals during the recording period of the collection window. This means that constant logic zero, constant logic one or state changes from logic one to logic zero will not be visible in the list of indications. Signals are not time tagged.
  • Page 653: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring 14.6.2 Function block The Event recorder has no function block of it’s own. 14.6.3 Signals 14.6.3.1 Input signals The Event recorder function logs the same binary input signals as the Disturbance report function. 14.6.4 Operation principle When one of the trig conditions for the disturbance report is activated, the event recorder...
  • Page 654: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring 14.6.5 Technical data Table 475: DRPRDRE technical data Function Value Buffer capacity Maximum number of events in disturbance report Maximum number of disturbance reports Resolution 1 ms Accuracy Depending on time synchronizing 14.7 Sequential of events 14.7.1 Functionality...
  • Page 655: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring The list can be configured to show oldest or newest events first with a setting on the local HMI. The sequential of events function runs continuously, in contrast to the event recorder function, which is only active during a disturbance, and each event record is an integral part of its associated DR.
  • Page 656: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.8.3 Signals 14.8.3.1 Input signals The trip value recorder function uses analog input signals connected to A1RADR to A3RADR (not A4RADR). 14.8.4 Operation principle Trip value recorder calculates and presents both fault and pre-fault magnitudes as well as the phase angles of all the selected analog input signals.
  • Page 657: Disturbance Recorder

    Section 14 1MRK 506 335-UUS A Monitoring 14.9 Disturbance recorder 14.9.1 Functionality The Disturbance recorder function supplies fast, complete and reliable information about disturbances in the power system. It facilitates understanding system behavior and related primary and secondary equipment during and after a disturbance. Recorded information is used for different purposes in the short perspective (for example corrective actions) and long perspective (for example functional analysis).
  • Page 658: Memory And Storage

    Section 14 1MRK 506 335-UUS A Monitoring Disturbance recorder collects analog values and binary signals continuously, in a cyclic buffer. The pre-fault buffer operates according to the FIFO principle; old data will continuously be overwritten as new data arrives when the buffer is full. The size of this buffer is determined by the set pre-fault recording time.
  • Page 659 Section 14 1MRK 506 335-UUS A Monitoring The header file (optional in the standard) contains basic information about the disturbance, that is, information from the Disturbance report sub-functions. The Disturbance handling tool use this information and present the recording in a user-friendly way.
  • Page 660: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring 14.9.6 Technical data Table 478: DRPRDRE technical data Function Value Buffer capacity Maximum number of analog inputs Maximum number of binary inputs Maximum number of disturbance reports Maximum total recording time (3.4 s recording time and maximum number of 340 seconds (100 channels, typical value) recordings) at 50 Hz...
  • Page 661: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.10.4 Signals Table 479: SPGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function BOOLEAN Input status 14.10.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600).
  • Page 662: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring 14.11.3 Function block SP16GGIO BLOCK ^IN1 ^IN2 ^IN3 ^IN4 ^IN5 ^IN6 ^IN7 ^IN8 ^IN9 ^IN10 ^IN11 ^IN12 ^IN13 ^IN14 ^IN15 ^IN16 IEC09000238_en_1.vsd IEC09000238 V1 EN Figure 303: SP16GGIO function block 14.11.4 Signals Table 480: SP16GGIO Input signals Name Type...
  • Page 663: Settings

    Section 14 1MRK 506 335-UUS A Monitoring 14.11.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600). 14.11.6 MonitoredData Table 481: SP16GGIO Monitored data Name Type Values (Range) Unit Description OUT1 GROUP Output 1 status...
  • Page 664: Operation Principle

    Section 14 1MRK 506 335-UUS A Monitoring 14.11.7 Operation principle Upon receiving signals at its inputs, IEC 61850 generic communication I/O functions 16 inputs (SP16GGIO) function will send the signals over IEC 61850-8-1 to the equipment or system that requests this signals. To be able to get the signal, one must use other tools, described in the Engineering manual and define which function block in which equipment or system should receive this information.
  • Page 665: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Table 483: MVGGIO Output signals Name Type Description VALUE REAL Magnitude of deadband value RANGE INTEGER Range 14.12.5 Settings Table 484: MVGGIO Non group settings (basic) Name Values (Range) Unit Step Default Description BasePrefix micro unit...
  • Page 666: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring 14.12.6 Monitored data Table 485: MVGGIO Monitored data Name Type Values (Range) Unit Description VALUE REAL Magnitude of deadband value RANGE INTEGER 0=Normal Range 1=High 2=Low 3=High-High 4=Low-Low 14.12.7 Operation principle Upon receiving an analog signal at its input, IEC61850 generic communication I/O functions (MVGGIO) will give the instantaneous value of the signal and the range, as output values.
  • Page 667: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring 14.13.3 Function block MVEXP RANGE* HIGHHIGH HIGH NORMAL LOWLOW IEC09000215-1-en.vsd IEC09000215 V1 EN Figure 304: MVEXP function block 14.13.4 Signals Table 486: MVEXP Input signals Name Type Default Description RANGE INTEGER Measured value range Table 487: MVEXP Output signals Name...
  • Page 668: Fault Locator Lmbrflo

    Section 14 1MRK 506 335-UUS A Monitoring Table 488: Input integer value converted to binary output signals Measured supervised below low-low between low‐ between low between high- above high-high value is: limit low and low and high limit high and high limit limit limit...
  • Page 669: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring with recorded load (pre-fault) currents, is used to exactly calculate the fault position. The fault can be recalculated with new source data at the actual fault to further increase the accuracy. Especially on heavily loaded long lines, where the source voltage angles can be up to 35-40 degrees apart, the accuracy can be still maintained with the advanced compensation included in fault locator.
  • Page 670: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Name Type Description BCD_8 BOOLEAN Distance in binary coded data, bit represents 8% BCD_4 BOOLEAN Distance in binary coded data, bit represents 4% BCD_2 BOOLEAN Distance in binary coded data, bit represents 2% BCD_1 BOOLEAN Distance in binary coded data, bit represents 1%...
  • Page 671: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description DrepChNoV_A 1 - 30 Recorder Input number recording phase voltage, VA DrepChNoV_B 1 - 30 Recorder Input number recording phase voltage, VB DrepChNoV_C 1 - 30 Recorder Input number recording phase voltage, VC 14.14.6...
  • Page 672: Measuring Principle

    Section 14 1MRK 506 335-UUS A Monitoring DRPRDRE ANSI09000726-1-en.vsd LMBRFLO ANSI09000726 V1 EN Figure 306: Simplified network configuration with network data, required for settings of the fault location-measuring function If source impedance in the near and far end of the protected line have changed in a significant manner relative to the set values at fault location calculation time (due to exceptional switching state in the immediate network, power generation out of order, and so on), new values can be entered via the local HMI and a recalculation of the distance to...
  • Page 673 Section 14 1MRK 506 335-UUS A Monitoring (1-p).Z xx01000171_ansi.vsd ANSI01000171 V1 EN Figure 307: Fault on transmission line fed from both ends From figure it is evident that: × × + × I p Z (Equation 101) EQUATION1595 V1 EN Where: is the line current after the fault, that is, pre-fault current plus current change due to the fault, is the fault current and...
  • Page 674 Section 14 1MRK 506 335-UUS A Monitoring × – ----------------------------------------- (Equation 103) EQUATION97 V1 EN Thus, the general fault location equation for a single line is: × × × I p Z (Equation 104) EQUATION1596 V1 EN Table 494: Expressions for V and I for different types of faults Fault type:...
  • Page 675 Section 14 1MRK 506 335-UUS A Monitoring × × × × I p Z (Equation 106) EQUATION1600 V1 EN Where: is a zero sequence current of the parallel line, is a mutual zero sequence impedance and is the distribution factor of the parallel line, which is: ×...
  • Page 676: The Non-Compensated Impedance Model

    Section 14 1MRK 506 335-UUS A Monitoring æ ö × --------------- - -------------------------- - è ø × A DD (Equation 111) EQUATION106 V1 EN and: • for parallel lines. • and V are given in the above table. • is calculated automatically according to equation 107. •...
  • Page 677: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring = × × × (Equation 114) EQUATION1603 V1 EN Where: is according to table 494. The accuracy of the distance-to-fault calculation, using the non-compensated impedance model, is influenced by the pre-fault load current. So, this method is only used if the load compensated models do not function.
  • Page 678: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring 14.15.2 Function block SPVNZBAT V_BATT AL_VLOW BLOCK AL_VHI PU_VLOW PU_VHI ANSI12000026-1-en.vsd ANSI12000026 V1 EN Figure 308: Function block 14.15.3 Functionality The station battery supervision function SPVNZBAT is used for monitoring battery terminal voltage. SPVNZBAT activates the start and alarm outputs when the battery terminal voltage exceeds the set upper limit or drops below the set lower limit.
  • Page 679: Settings

    Section 14 1MRK 506 335-UUS A Monitoring 14.15.5 Settings Table 498: SPVNZBAT Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Enabled Disable/Enable Operation Enabled RtdBattVolt 20.00 - 250.00 1.00 110.00 Battery rated voltage BattVoltLowLim 60 - 140 %Vbat Lower limit for the battery terminal voltage BattVoltHiLim...
  • Page 680 Section 14 1MRK 506 335-UUS A Monitoring Comparator PU_VLOW V<BattVoltLowLim 0-tDelay AL_VLOW V_BATT 0-tReset Comparator PU_VHI U<BattVoltHiLim 0-tDelay AL_VHI 0-tReset ANSI11000292-1-en.vsd ANSI11000292 V1 EN Figure 309: Functional module diagram The battery rated voltage is set with the RtdBattVolt setting. The value of the BattVoltLowLim and BattVoltHiLim settings are given in relative per unit to the RtdBattVolt setting.
  • Page 681: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring 14.15.9 Technical data Table 501: SPVNZBAT Technical data Function Range or value Accuracy Lower limit for the battery terminal (60-140) % of Vbat ± 1.0% of set battery voltage voltage Reset ratio, lower limit <105 % Upper limit for the battery terminal (60-140) % of Vbat...
  • Page 682: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.16.4 Signals Inputs PRESSURE and TEMP together with settings PressAlmLimit, PressLOLimit, TempAlarmLimit and TempLOLimit are not supported in this release of 650 series. Table 502: SSIMG (63) Input signals Name Type Default Description BLOCK BOOLEAN Block of function...
  • Page 683: Operation Principle

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description TempLOLimit -40.00 - 200.00 0.01 30.00 Temperature lockout level of the medium tPressureAlarm 0.000 - 60.000 0.001 0.000 Time delay for pressure alarm tPressureLO 0.000 - 60.000 0.001 0.000 Time delay for pressure lockout indication...
  • Page 684: Insulation Liquid Monitoring Function Ssiml (71)

    Section 14 1MRK 506 335-UUS A Monitoring 14.17 Insulation liquid monitoring function SSIML (71) 14.17.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Insulation liquid monitoring function SSIML 14.17.2 Functionality Insulation liquid monitoring function SSIML (71) is used for monitoring the circuit breaker condition.
  • Page 685: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Table 506: SSIML (71) Input signals Name Type Default Description BLOCK BOOLEAN Block of function BLK_ALM BOOLEAN Block all the alarms LEVEL REAL Level input from CB TEMP REAL Temperature of the insulation medium from CB LVL_ALM BOOLEAN Level alarm signal...
  • Page 686: Operation Principle

    Section 14 1MRK 506 335-UUS A Monitoring Name Values (Range) Unit Step Default Description tResetLevelLO 0.000 - 60.000 0.001 0.000 Reset time delay for level lockout tResetTempLO 0.000 - 60.000 0.001 0.000 Reset time delay for temperture lockout tResetTempAlm 0.000 - 60.000 0.001 0.000 Reset time delay for temperture alarm...
  • Page 687: Functionality

    Section 14 1MRK 506 335-UUS A Monitoring 14.18.2 Functionality The circuit breaker condition monitoring function SSCBR is used to monitor different parameters of the circuit breaker. The breaker requires maintenance when the number of operations has reached a predefined value. For proper functioning of the circuit breaker, it is essential to monitor the circuit breaker operation, spring charge indication, breaker wear, travel time, number of operation cycles and accumulated energy.
  • Page 688: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.18.4 Signals Table 510: SSCBR Input signals Name Type Default Description GROUP Three phase group signal for current inputs SIGNAL BLOCK BOOLEAN Block of function BLK_ALM BOOLEAN Block all the alarms POSOPEN BOOLEAN Signal for open position of apparatus from I/O POSCLOSE BOOLEAN...
  • Page 689: Settings

    Section 14 1MRK 506 335-UUS A Monitoring 14.18.5 Settings Table 512: SSCBR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Operation Off / On AccDisLevel 5.00 - 500.00 0.01 10.00 RMS current setting below which energy accumulation stops CurrExp 0.00 - 2.00...
  • Page 690: Monitored Data

    Section 14 1MRK 506 335-UUS A Monitoring 14.18.6 Monitored data Table 513: SSCBR Monitored data Name Type Values (Range) Unit Description CBOTRVT REAL Travel time of the CB during opening operation CBCLTRVT REAL Travel time of the CB during closing operation SPRCHRT REAL The charging time of the CB...
  • Page 691: Circuit Breaker Status

    Section 14 1MRK 506 335-UUS A Monitoring CBOPEN POSCLOSE Circuit POSOPEN breaker CBINVPOS status Operation NOOPRALM monitoring BLK_ALM BLOCK TRVTOAL Breaker contact travel time TRVTCAL TRVTRST OPRALM Operation counter OPRLOALM IACCALM Accumula- ted energy IACCLOAL IACCRST Breaker CBLIFEAL life time CBCNTRST Spring SPRCHRGN...
  • Page 692: Circuit Breaker Operation Monitoring

    Section 14 1MRK 506 335-UUS A Monitoring breaker status monitoring can be described using a module diagram. All the modules in the diagram are explained in the next sections. POSCLOSE CBOPEN Contact POSOPEN position CBINVPOS indicator Phase current check GUID-60ADC120-4B5A-40D8-B1C5-475E4634214B-ANSI V1 EN Figure 314: Functional module diagram for monitoring circuit breaker status BLOCK and BLK_ALM inputs...
  • Page 693: Breaker Contact Travel Time

    Section 14 1MRK 506 335-UUS A Monitoring GUID-82C88B52-1812-477F-8B1A-3011A300547A V1 EN Figure 315: Functional module diagram for calculating inactive days and alarm for circuit breaker operation monitoring Inactivity timer The module calculates the number of days the circuit breaker has remained inactive, that is, has stayed in the same open or closed state.
  • Page 694 Section 14 1MRK 506 335-UUS A Monitoring Travelling time calculator The breaker contact travel time is calculated from the time between auxiliary contacts' state change. The open travel time is measured between the opening of the POSCLOSE auxiliary contact and the closing of the POSOPEN auxiliary contact. Travel time is also measured between the opening of the POSOPEN auxiliary contact and the closing of the POSCLOSE auxiliary contact.
  • Page 695: Operation Counter

    Section 14 1MRK 506 335-UUS A Monitoring 14.18.7.4 Operation counter The operation counter subfunction calculates the number of breaker operation cycles. Both open and close operations are included in one operation cycle. The operation counter value is updated after each open operation. The operation of the subfunction can be described by using a module diagram.
  • Page 696 Section 14 1MRK 506 335-UUS A Monitoring IACCLOAL Accumula- Alarm limit ted energy check calculator IACCALM POSCLOSE IACCRST BLOCK BLK_ALM GUID-DAC3746F-DFBF-4186-A99D-1D972578D32A-ANSI V1 EN Figure 318: Functional module diagram for calculating accumulative energy and alarm Accumulated energy calculator This module calculates the accumulated energy I t [(kA) s].
  • Page 697: Remaining Life Of The Circuit Breaker

    Section 14 1MRK 506 335-UUS A Monitoring be reset by setting the Clear accum. breaking curr setting to on in the clear menu from LHMI. Alarm limit check The IACCALM alarm is activated when the accumulated energy exceeds the value set with the AccCurrAlmLvl threshold setting.
  • Page 698: Circuit Breaker Spring Charged Indication

    Section 14 1MRK 506 335-UUS A Monitoring The remaining life is calculated separately for all three phases and it is available as a monitored data value CBLIFE_A (_B, _C). The values can be cleared by setting the parameter CB wear values in the clear menu from LHMI. Clearing CB wear values also resets the operation counter.
  • Page 699: Gas Pressure Supervision

    Section 14 1MRK 506 335-UUS A Monitoring Spring charge time measurement Two binary inputs, SPRCHRGN and SPRCHRGD, indicate spring charging started and spring charged, respectively. The spring charging time is calculated from the difference of these two signal timings. The spring charging time SPRCHRT is available through the Monitored data view . Alarm limit check If the time taken by the spring to charge is more than the value set with the tSprngChrgAlm setting, the subfunction generates the SPRCHRAL alarm.
  • Page 700: Technical Data

    Section 14 1MRK 506 335-UUS A Monitoring The binary input BLOCK can be used to block the function. The activation of the BLOCK input deactivates all outputs and resets internal timers. The alarm signals from the function can be blocked by activating the binary input BLK_ALM. 14.18.8 Technical data Table 514:...
  • Page 701: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring GUID-B8A3A04C-430D-4488-9F72-8529FAB0B17D V1 EN Figure 323: Settings for CMMXU: 1 All input signals to IEC 60870-5-103 I103MEAS must be connected in application configuration. Connect an input signals on IEC 60870-5-103 I103MEAS that is not connected to the corresponding output on MMXU function, to outputs on the fixed signal function block.
  • Page 702: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.19.3 Signals Table 515: I103MEAS Input signals Name Type Default Description BLOCK BOOLEAN Block of service value reporting REAL Service value for current phase A REAL Service value for current phase B REAL Service value for current phase C REAL Service value for residual current IN...
  • Page 703: I103Measusr

    Section 14 1MRK 506 335-UUS A Monitoring 14.20 Measurands user defined signals for IEC 60870-5-103 I103MEASUSR 14.20.1 Functionality I103MEASUSR is a function block with user defined input measurands in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the Information number parameter for each block.
  • Page 704: Settings

    Section 14 1MRK 506 335-UUS A Monitoring 14.20.4 Settings Table 518: I103MEASUSR Non group settings (basic) Name Values (Range) Unit Step Default Description FunctionType 1 - 255 Function type (1-255) InfNo 1 - 255 Information number for measurands (1-255) MaxMeasur1 0.05 - 0.05 1000.00...
  • Page 705: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring 14.21.2 Function block I103AR BLOCK 16_ARACT 128_CBON 130_BLKD IEC10000289-2-en.vsd IEC10000289 V2 EN Figure 326: I103AR function block 14.21.3 Signals Table 519: I103AR Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 16_ARACT BOOLEAN Information number 16, auto-recloser active...
  • Page 706: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring 14.22.2 Function block I103EF BLOCK 51_EFFW 52_EFREV IEC10000290-1-en.vsd IEC10000290 V1 EN Figure 327: I103EF function block 14.22.3 Signals Table 521: I103EF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting 51_EFFW BOOLEAN Information number 51, ground-fault forward...
  • Page 707: Function Block

    Section 14 1MRK 506 335-UUS A Monitoring 14.23.2 Function block I103FLTPROT BLOCK 64_PU_A 65_PU_B 66_PU_C 67_STIN 68_TRGEN 69_TR_A 70_TR_B 71_TR_C 72_TRBKUP 73_SCL 74_FW 75_REV 76_TRANS 77_RECEV 78_ZONE1 79_ZONE2 80_ZONE3 81_ZONE4 82_ZONE5 84_STGEN 85_BFP 86_MTR_A 87_MTR_B 88_MTR_C 89_MTRN 90_IOC 91_IOC 92_IEF 93_IEF ARINPROG FLTLOC...
  • Page 708: Settings

    Section 14 1MRK 506 335-UUS A Monitoring Name Type Default Description 73_SCL REAL Information number 73, fault location in ohm 74_FW BOOLEAN Information number 74, forward/line 75_REV BOOLEAN Information number 75, reverse/busbar 76_TRANS BOOLEAN Information number 76, signal transmitted 77_RECEV BOOLEAN Information number 77, signal received 78_ZONE1...
  • Page 709: Ied Status For Iec 60870-5-103 I103Ied

    Section 14 1MRK 506 335-UUS A Monitoring 14.24 IED status for IEC 60870-5-103 I103IED 14.24.1 Functionality I103IED is a function block with defined IED functions in monitor direction. This block uses parameter as FunctionType, and information number parameter is defined for each input signal.
  • Page 710: Supervison Status For Iec 60870-5-103 I103Superv

    Section 14 1MRK 506 335-UUS A Monitoring 14.25 Supervison status for IEC 60870-5-103 I103SUPERV 14.25.1 Functionality I103SUPERV is a function block with defined functions for supervision indications in monitor direction. This block includes the FunctionType parameter, and the information number parameter is defined for each output signal. 14.25.2 Function block I103SUPERV...
  • Page 711: Status For User Defined Signals For Iec 60870-5-103 I103Usrdef

    Section 14 1MRK 506 335-UUS A Monitoring 14.26 Status for user defined signals for IEC 60870-5-103 I103USRDEF 14.26.1 Functionality I103USRDEF is a function blocks with user defined input signals in monitor direction. These function blocks include the FunctionType parameter for each block in the private range, and the information number parameter for each input signal.
  • Page 712: Signals

    Section 14 1MRK 506 335-UUS A Monitoring 14.26.3 Signals Table 529: I103USRDEF Input signals Name Type Default Description BLOCK BOOLEAN Block of status reporting INPUT1 BOOLEAN Binary signal Input 1 INPUT2 BOOLEAN Binary signal input 2 INPUT3 BOOLEAN Binary signal input 3 INPUT4 BOOLEAN Binary signal input 4...
  • Page 713: Pulse Counter Pcggio

    Section 15 1MRK 506 335-UUS A Metering Section 15 Metering 15.1 Pulse counter PCGGIO 15.1.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Pulse counter PCGGIO S00947 V1 EN 15.1.2 Functionality Pulse counter (PCGGIO) function counts externally generated binary pulses, for instance pulses coming from an external energy meter, for calculation of energy consumption values.
  • Page 714: Signals

    Section 15 1MRK 506 335-UUS A Metering 15.1.4 Signals Table 531: PCGGIO Input signals Name Type Default Description BLOCK BOOLEAN Block of function READ_VAL BOOLEAN Initiates an additional pulse counter reading BI_PULSE BOOLEAN Connect binary input channel for metering RS_CNT BOOLEAN Resets pulse counter value Table 532:...
  • Page 715: Monitored Data

    Section 15 1MRK 506 335-UUS A Metering 15.1.6 Monitored data Table 534: PCGGIO Monitored data Name Type Values (Range) Unit Description CNT_VAL INTEGER Actual pulse counter value SCAL_VAL REAL Scaled value with time and status information 15.1.7 Operation principle The registration of pulses is done according to setting of CountCriteria parameter on one of the 9 binary input channels located on the BIO module.
  • Page 716: Technical Data

    Section 15 1MRK 506 335-UUS A Metering readings according to the setting of parameter CountCriteria. The signal must be a pulse with a length >1 second. The BI_PULSE input is connected to the used input of the function block for the binary input output module (BIO).
  • Page 717: Energy Calculation And Demand Handling Etpmmtr

    Section 15 1MRK 506 335-UUS A Metering 15.2 Energy calculation and demand handling ETPMMTR 15.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Energy calculation and demand ETPMMTR handling IEC10000169 V1 EN 15.2.2 Functionality Outputs from the Measurements (CVMMXN) function can be used to calculate energy consumption.
  • Page 718: Signals

    Section 15 1MRK 506 335-UUS A Metering 15.2.4 Signals Table 536: ETPMMTR Input signals Name Type Default Description REAL Measured active power REAL Measured reactive power STACC BOOLEAN Start to accumulate energy values RSTACC BOOLEAN Reset of accumulated enery reading RSTDMD BOOLEAN Reset of maximum demand reading...
  • Page 719: Settings

    Section 15 1MRK 506 335-UUS A Metering 15.2.5 Settings Table 538: ETPMMTR Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled StartAcc Disabled Disabled Activate the accumulation of energy values Enabled tEnergy 1 Minute 1 Minute Time interval for energy calculation...
  • Page 720: Monitored Data

    Section 15 1MRK 506 335-UUS A Metering 15.2.6 Monitored data Table 540: ETPMMTR Monitored data Name Type Values (Range) Unit Description EAFACC REAL Accumulated forward active energy value EARACC REAL Accumulated reverse active energy value ERFACC REAL MVArh Accumulated forward reactive energy value ERRACC REAL...
  • Page 721: Technical Data

    Section 15 1MRK 506 335-UUS A Metering ETPMMTR CVMMXN P_INST Q_INST STACC TRUE RSTACC FALSE RSTDMD FALSE IEC09000106.vsd IEC09000106 V1 EN Figure 335: Connection of Energy calculation and demand handling function (ETPMMTR) to the Measurements function (CVMMXN) 15.2.8 Technical data Table 541: ETPMMTR technical data Function...
  • Page 723: Dnp3 Protocol

    Section 16 1MRK 506 335-UUS A Station communication Section 16 Station communication 16.1 DNP3 protocol DNP3 (Distributed Network Protocol) is a set of communications protocols used to communicate data between components in process automation systems. For a detailed description of the DNP3 protocol, see the DNP3 Communication protocol manual. 16.2 IEC 61850-8-1 communication protocol 16.2.1...
  • Page 724: Communication Interfaces And Protocols

    Section 16 1MRK 506 335-UUS A Station communication interoperates with other IEC 61850-compliant IEDs, and systems and simultaneously reports events to five different clients on the IEC 61850 station bus. The Denial of Service functions DOSLAN1 and DOSFRNT are included to limit the inbound network traffic.
  • Page 725: Settings

    Section 16 1MRK 506 335-UUS A Station communication 16.2.4 Settings Table 543: IEC61850-8-1 Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Disabled/Enabled Enabled PortSelGOOSE Front LAN1 Port selection for GOOSE communication LAN1 PortSelMMS Front LAN1 Port selection for MMS communication...
  • Page 726: Function Block

    Section 16 1MRK 506 335-UUS A Station communication 16.3.2 Function block GOOSEINTLKRCV BLOCK ^RESREQ ^RESGRANT ^APP1_OP ^APP1_CL APP1VAL ^APP2_OP ^APP2_CL APP2VAL ^APP3_OP ^APP3_CL APP3VAL ^APP4_OP ^APP4_CL APP4VAL ^APP5_OP ^APP5_CL APP5VAL ^APP6_OP ^APP6_CL APP6VAL ^APP7_OP ^APP7_CL APP7VAL ^APP8_OP ^APP8_CL APP8VAL ^APP9_OP ^APP9_CL APP9VAL ^APP10_OP...
  • Page 727 Section 16 1MRK 506 335-UUS A Station communication Table 546: GOOSEINTLKRCV Output signals Name Type Description RESREQ BOOLEAN Reservation request RESGRANT BOOLEAN Reservation granted APP1_OP BOOLEAN Apparatus 1 position is open APP1_CL BOOLEAN Apparatus 1 position is closed APP1VAL BOOLEAN Apparatus 1 position is valid APP2_OP BOOLEAN...
  • Page 728: Settings

    Section 16 1MRK 506 335-UUS A Station communication Name Type Description APP12_OP BOOLEAN Apparatus 12 position is open APP12_CL BOOLEAN Apparatus 12 position is closed APP12VAL BOOLEAN Apparatus 12 position is valid APP13_OP BOOLEAN Apparatus 13 position is open APP13_CL BOOLEAN Apparatus 13 position is closed APP13VAL...
  • Page 729: Function Block

    Section 16 1MRK 506 335-UUS A Station communication 16.4.2 Function block GOOSEBINRCV BLOCK ^OUT1 OUT1VAL ^OUT2 OUT2VAL ^OUT3 OUT3VAL ^OUT4 OUT4VAL ^OUT5 OUT5VAL ^OUT6 OUT6VAL ^OUT7 OUT7VAL ^OUT8 OUT8VAL ^OUT9 OUT9VAL ^OUT10 OUT10VAL ^OUT11 OUT11VAL ^OUT12 OUT12VAL ^OUT13 OUT13VAL ^OUT14 OUT14VAL ^OUT15 OUT15VAL...
  • Page 730: Settings

    Section 16 1MRK 506 335-UUS A Station communication Name Type Description OUT3 BOOLEAN Binary output 3 OUT3VAL BOOLEAN Valid data on binary output 3 OUT4 BOOLEAN Binary output 4 OUT4VAL BOOLEAN Valid data on binary output 4 OUT5 BOOLEAN Binary output 5 OUT5VAL BOOLEAN Valid data on binary output 5...
  • Page 731: Operation Principle

    Section 16 1MRK 506 335-UUS A Station communication 16.4.5 Operation principle The OUTxVAL output, where 1≤x≤16, will be HIGH if the incoming message is with valid data. The OUTxVAL output contains both quality validity and communication validity since GOOSEBINRCV function has no COMMVALID output. The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary values.
  • Page 732: Function Block

    Section 16 1MRK 506 335-UUS A Station communication 16.5.3 Function block GOOSEDPRCV BLOCK ^DPOUT DATAVALID COMMVALID TEST IEC10000249-1-en.vsd IEC10000249 V1 EN Figure 338: GOOSEDPRCV function block 16.5.4 Signals Table 551: GOOSEDPRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 552: GOOSEDPRCV Output signals Name...
  • Page 733: Goose Function Block To Receive An Integer Value Gooseintrcv

    Section 16 1MRK 506 335-UUS A Station communication The input of this GOOSE block must be linked in SMT by means of a cross to receive the double point values. The implementation for IEC61850 quality data handling is restricted to a simple level.
  • Page 734: Signals

    Section 16 1MRK 506 335-UUS A Station communication 16.6.4 Signals Table 554: GOOSEINTRCV Input signals Name Type Default Description BLOCK BOOLEAN Block of function Table 555: GOOSEINTRCV Output signals Name Type Description INTOUT INTEGER Integer output DATAVALID BOOLEAN Data valid for integer output COMMVALID BOOLEAN Communication valid for integer output...
  • Page 735: Functionality

    Section 16 1MRK 506 335-UUS A Station communication 16.7 GOOSE function block to receive a measurand value GOOSEMVRCV 16.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number GOOSE function block to receive a GOOSEMVRCV measurand value 16.7.2 Functionality GOOSEMVRCV is used to receive measured value using IEC61850 protocol via...
  • Page 736: Settings

    Section 16 1MRK 506 335-UUS A Station communication 16.7.5 Settings Table 559: GOOSEMVRCV Non group settings (basic) Name Values (Range) Unit Step Default Description Operation Disabled Disabled Operation Enable/Disable Enabled 16.7.6 Operation principle The DATAVALID output will be HIGH if the incoming message is with valid data. The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen.
  • Page 737: Functionality

    Section 16 1MRK 506 335-UUS A Station communication 16.8.2 Functionality GOOSESPRCV is used to receive a single point value using IEC61850 protocol via GOOSE. 16.8.3 Function block GOOSESPRCV BLOCK ^SPOUT DATAVALID COMMVALID TEST IEC10000248-1-en.vsd IEC10000248 V1 EN Figure 341: GOOSESPRCV function block 16.8.4 Signals Table 560:...
  • Page 738: Iec 60870-5-103 Communication Protocol

    Section 16 1MRK 506 335-UUS A Station communication The COMMVALID output will become LOW when the sending IED is under total failure condition and the GOOSE transmission from the sending IED does not happen. The TEST output will go HIGH if the sending IED is in test mode. The input of this GOOSE block must be linked in SMT by means of a cross to receive the binary single point values.
  • Page 739: Settings

    Section 16 1MRK 506 335-UUS A Station communication The function IEC60870-5-103 serial communication for RS485, RS485103, is used to configure the communication parameters for the RS485 serial communication interface. 16.9.2 Settings Table 563: OPTICAL103 Non group settings (basic) Name Values (Range) Unit Step Default...
  • Page 740: Iec 61850-8-1 Redundant Station Bus Communication

    Section 16 1MRK 506 335-UUS A Station communication 16.10 IEC 61850-8-1 redundant station bus communication Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number System component for parallel PRPSTATUS redundancy protocol 16.10.1 Functionality Redundant station bus communication according to IEC 62439-3 Edition 2 is available as option in the Customized 650 Ver 1.3 series IEDs, and the selection is made at ordering.
  • Page 741: Function Block

    Section 16 1MRK 506 335-UUS A Station communication Station Control System Redundancy Supervision Data Data Switch A Switch B Data Data COM03 PRPSTATUS IEC13000003-1-en.vsd IEC13000003 V1 EN Figure 342: Redundant station bus 16.10.3 Function block PRPSTATUS LAN1-A LAN1-B IEC13000011-1-en.vsd IEC13000011 V1 EN Figure 343: PRPSTATUS function block Technical manual...
  • Page 742: Setting Parameters

    Section 16 1MRK 506 335-UUS A Station communication Table 565: PRPSTATUS Output signals Name Type Description LAN1-A BOOLEAN LAN1 channel A status LAN1-B BOOLEAN LAN1 channel B status 16.10.4 Setting parameters The PRPSTATUS function has no user settings. However, the redundant communication is configured in the LHMI under Main menu/ Configuration/Communication/TCP-IP configuration/ETHLAN1_AB where Operation mode, IPAddress and IPMask are configured.
  • Page 743: Generic Security Application Component Agsal

    Section 16 1MRK 506 335-UUS A Station communication Name Values (Range) Unit Step Default Description ExtLogSrv3Type Disabled Disabled External log server 3 type ExtLogSrv1Type SYSLOG TCP/IP CEF TCP/IP ExtLogSrv3Port 1 - 65535 External log server 3 port number ExtLogSrv3IP 0 - 18 127.0.0.1 External log server 3 IP-address Address...
  • Page 744: Security Events On Protocols Secalarm

    Section 16 1MRK 506 335-UUS A Station communication 16.13 Security events on protocols SECALARM 16.13.1 Security alarm SECALARM 16.13.2 Signals Table 567: SECALARM Output signals Name Type Description EVENTID INTEGER EventId of the generated security event SEQNUMBER INTEGER Sequence number of the generated security event 16.13.3 Settings Table 568:...
  • Page 745: Self Supervision With Internal Event List

    Section 17 1MRK 506 335-UUS A Basic IED functions Section 17 Basic IED functions 17.1 Self supervision with internal event list 17.1.1 Functionality The Self supervision with internal event list INTERRSIG and SELFSUPEVLST function reacts to internal system events generated by the different built-in self-supervision elements.
  • Page 746: Signals

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.1.2.3 Signals Table 569: INTERRSIG Output signals Name Type Description FAIL BOOLEAN Internal fail WARNING BOOLEAN Internal warning TSYNCERR BOOLEAN Time synchronization error RTCERR BOOLEAN Real time clock error DISABLE BOOLEAN Application Disable 17.1.2.4 Settings...
  • Page 747 Section 17 1MRK 506 335-UUS A Basic IED functions Diagnostics/Internal events or Main menu/Diagnostics/IED status/General. The information from the self-supervision function is also available in the Event Viewer in PCM600. Both events from the Event list and the internal events are listed in time consecutive order in the Event Viewer.
  • Page 748 Section 17 1MRK 506 335-UUS A Basic IED functions LIODEV FAIL LIODEV STOPPED e.g. BIO1- ERROR LIODEV STARTED SW Watchdog Error Internal Fail WDOG STARVED Runtime Exec Error RTE FATAL ERROR File System Error FTF FATAL ERROR RTE APP FAILED Runtime App Error RTE ALL APPS OK GENTS RTC ERROR...
  • Page 749: Internal Signals

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.1.4.1 Internal signals SELFSUPEVLST function provides several status signals, that tells about the condition of the IED. As they provide information about the internal status of the IED, they are also called internal signals.
  • Page 750: Run-Time Model

    Section 17 1MRK 506 335-UUS A Basic IED functions Table 572: Explanations of internal signals Name of signal Reasons for activation Internal Fail This signal will be active if one or more of the following internal signals are active; Real Time Clock Error, Runtime App Error, Runtime Exec Error, SW Watchdog Error, File System Error Internal Warning This signal will be active if one or more of the following internal...
  • Page 751: Technical Data

    Section 17 1MRK 506 335-UUS A Basic IED functions ADx_Low Controller ADx_High IEC05000296-3-en.vsd IEC05000296 V3 EN Figure 347: Simplified drawing of A/D converter for the IED. The technique to split the analog input signal into two A/D converter(s) with different amplification makes it possible to supervise the A/D converters under normal conditions where the signals from the two A/D converters should be identical.
  • Page 752: Time Synchronization

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.2 Time synchronization 17.2.1 Functionality The time synchronization source selector is used to select a common source of absolute time for the IED when it is a part of a protection system. This makes it possible to compare event and disturbance data between all IEDs in a station automation system.
  • Page 753: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.2.3.2 Settings Table 575: SNTP Non group settings (basic) Name Values (Range) Unit Step Default Description ServerIP-Add 0 - 255 0.0.0.0 Server IP-address Address RedServIP-Add 0 - 255 0.0.0.0 Redundant server IP-address Address 17.2.4 Time system, summer time begin DSTBEGIN...
  • Page 754: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.2.4.2 Settings Table 576: DSTBEGIN Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January March Month in year when daylight time starts February March April June July August September October...
  • Page 755: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.2.5.2 Settings Table 577: DSTEND Non group settings (basic) Name Values (Range) Unit Step Default Description MonthInYear January October Month in year when daylight time ends February March April June July August September October...
  • Page 756: Time Synchronization Via Irig-B

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.2.7 Time synchronization via IRIG-B 17.2.7.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Time synchronization via IRIG-B IRIG-B 17.2.7.2 Settings Table 579: IRIG-B Non group settings (basic) Name Values (Range) Unit...
  • Page 757 Section 17 1MRK 506 335-UUS A Basic IED functions Design of the time system (clock synchronization) External Time tagging and general synchronization synchronization sources Protection Commu Events and control Disabled - nication functions SNTP Time- IRIG-B regulator SW- time IEC60870-5-103 ANSI09000210-1-en.vsd ANSI09000210 V1 EN Figure 348:...
  • Page 758: Real-Time Clock (Rtc) Operation

    Section 17 1MRK 506 335-UUS A Basic IED functions • The maximum error of the last used synchronization message • The time since the last used synchronization message • The rate accuracy of the internal clock in the function. 17.2.8.2 Real-time clock (RTC) operation The IED has a built-in real-time clock (RTC) with a resolution of one second.
  • Page 759: Synchronization Alternatives

    Section 17 1MRK 506 335-UUS A Basic IED functions time-out is set so that one message can be lost without getting a TSYNCERR, but if more than one message is lost, a TSYNCERR is given. 17.2.8.3 Synchronization alternatives Two main alternatives of external time synchronization are available. The synchronization message is applied either via any of the communication ports of the IED as a telegram message including date and time or via IRIG-B.
  • Page 760: Technical Data

    Section 17 1MRK 506 335-UUS A Basic IED functions The IRIG-B input also takes care of IEEE1344 messages that are sent by IRIG-B clocks, as IRIG-B previously did not have any year information. IEEE1344 is compatible with IRIG-B and contains year information and information of the time-zone. It is recommended to use IEEE 1344 for supplying time information to the IRIG-B module.
  • Page 761: Setting Group Handling Setgrps

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.3.2 Setting group handling SETGRPS 17.3.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Setting group handling SETGRPS 17.3.2.2 Settings Table 581: SETGRPS Non group settings (basic) Name Values (Range) Unit...
  • Page 762: Signals

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.3.3.3 Signals Table 582: ACTVGRP Input signals Name Type Default Description ACTGRP1 BOOLEAN Selects setting group 1 as active ACTGRP2 BOOLEAN Selects setting group 2 as active ACTGRP3 BOOLEAN Selects setting group 3 as active ACTGRP4 BOOLEAN Selects setting group 4 as active...
  • Page 763: Test Mode Functionality Testmode

    Section 17 1MRK 506 335-UUS A Basic IED functions More than one input may be activated at the same time. In such cases the lower order setting group has priority. This means that if for example both group four and group two are set to be activated, group two will be the one activated.
  • Page 764: Functionality

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.4.2 Functionality When the Test mode functionality TESTMODE is activated, all the functions in the IED are automatically blocked. Activated TESTMODE is indicating by a flashing yellow LED on the local HMI. It is then possible to unblock every function(s) individually from the local HMI to perform required tests.
  • Page 765: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.4.5 Settings Table 586: TESTMODE Non group settings (basic) Name Values (Range) Unit Step Default Description TestMode Disabled Disabled Test mode in operation (Enabled) or not Enabled (Disabled) EventDisable Disabled Disabled Event disable during testmode Enabled CmdTestBit...
  • Page 766: Change Lock Function Chnglck

    Section 17 1MRK 506 335-UUS A Basic IED functions When a binary input is used to set the IED in test mode and a parameter, that requires restart of the application, is changed, the IED will re-enter test mode and all functions will be blocked, also functions that were unblocked before the change.
  • Page 767: Function Block

    Section 17 1MRK 506 335-UUS A Basic IED functions logical one to the CHNGLCK input. If such a situation would occur in spite of these precautions, then please contact the local ABB representative for remedial action. 17.5.3 Function block CHNGLCK...
  • Page 768: Ied Identifiers Terminalid

    Section 17 1MRK 506 335-UUS A Basic IED functions • Clear disturbances • Reset LEDs • Reset counters and other runtime component states • Control operations • Set system time • Enter and exit from test mode • Change of active setting group The binary input signal LOCK controlling the function is defined in ACT or SMT: Binary input Function...
  • Page 769: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.6.3 Settings Table 589: TERMINALID Non group settings (basic) Name Values (Range) Unit Step Default Description StationName 0 - 18 Station name Station name StationNumber 0 - 99999 Station number ObjectName 0 - 18 Object name Object name...
  • Page 770: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.7.3 Settings The function does not have any parameters available in the local HMI or PCM600. 17.8 Primary system values PRIMVAL 17.8.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 771: Identification

    Section 17 1MRK 506 335-UUS A Basic IED functions The SMAI function blocks for the 650 series of products are possible to set for two cycle times either 5 or 20ms. The function blocks connected to a SMAI function block shall always have the same cycle time as the SMAI block.
  • Page 772: Signals

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.9.4 Signals Table 591: SMAI_20_1 Input signals Name Type Default Description BLOCK BOOLEAN Block group 1 DFTSPFC REAL 20.0 Number of samples per fundamental cycle used for DFT calculation REVROT BOOLEAN Reverse rotation group 1 GRP1_A STRING...
  • Page 773: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions Table 594: SMAI_20_12 Output signals Name Type Description AI3P GROUP SIGNAL Grouped three phase signal containing data from inputs GROUP SIGNAL Quantity connected to the first analog input GROUP SIGNAL Quantity connected to the second analog input GROUP SIGNAL Quantity connected to the third analog input GROUP SIGNAL...
  • Page 774 Section 17 1MRK 506 335-UUS A Basic IED functions Table 596: SMAI_20_1 Non group settings (advanced) Name Values (Range) Unit Step Default Description Negation Disabled Disabled Negation NegateN Negate3Ph Negate3Ph+N MinValFreqMeas 5 - 200 Limit for frequency calculation in % of VBase Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible.
  • Page 775: Operation Principle

    Section 17 1MRK 506 335-UUS A Basic IED functions Even if the AnalogInputType setting of a SMAI block is set to Current, the MinValFreqMeas setting is still visible. This means that the minimum level for current amplitude is based on VBase. For example, if VBase is 20000, the minimum amplitude for current is 20000 * 10% = 2000.
  • Page 776 Section 17 1MRK 506 335-UUS A Basic IED functions • It is not mandatory to connect all the inputs of SMAI function. However, it is very important that same set of three phase analog signals should be connected to one SMAI function.
  • Page 777 Section 17 1MRK 506 335-UUS A Basic IED functions set system frequency. DFTReference set to DFTRefGrpX uses DFT reference from the selected group block, when own group selected adaptive DFT reference will be used based on the calculated signal frequency from own group. DFTReference set to External DFT Ref will use reference based on input signal DFTSPFC.
  • Page 778 Section 17 1MRK 506 335-UUS A Basic IED functions Task time group 1 Task time group 2 (5ms) (20ms) SMAI_20_1 SMAI_20_1 BLOCK SPFCOUT BLOCK SPFCOUT DFTSPFC AI3P DFTSPFC AI3P REVROT REVROT ^GRP1_A ^GRP1_A ^GRP1_B ^GRP1_B ^GRP1_C ^GRP1_C ^GRP1_N ^GRP1_N Task time group 1 (5ms) Task time group 2 (20ms) SMAI instance 3 phase group SMAI instance 3 phase group...
  • Page 779: Summation Block 3 Phase 3Phsum

    Section 17 1MRK 506 335-UUS A Basic IED functions For SMAI_20_1:2 to SMAI_20_12:2 DFTReference set to External DFT ref to use DFTSPFC input as reference. 17.10 Summation block 3 phase 3PHSUM 17.10.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number...
  • Page 780: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions Table 600: 3PHSUM Output signals Name Type Description AI3P GROUP SIGNAL Linear combination of two connected three phase inputs GROUP SIGNAL Linear combination of input 1 signals from both SMAI blocks GROUP SIGNAL Linear combination of input 2 signals from both SMAI blocks...
  • Page 781: Identification

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.11.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Global base values GBASVAL 17.11.2 Functionality Global base values function (GBASVAL) is used to provide global values, common for all applicable functions within the IED.
  • Page 782: Functionality

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.12.2 Functionality To safeguard the interests of our customers, both the IED and the tools that are accessing the IED are protected, by means of authorization handling. The authorization handling of the IED and the PCM600 is implemented at both access points to the IED: •...
  • Page 783: Operation Principle

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.12.4 Operation principle There are different levels (or types) of users that can access or operate different areas of the IED and tools functionality. The pre-defined user types are given in Table 604.
  • Page 784: Authority Management Authman

    Section 17 1MRK 506 335-UUS A Basic IED functions If one or more users are created with the IED User Management and written to the IED, then, when a user attempts a Log on by pressing the key or when the user attempts to perform an operation that is password protected, the Log on window opens.
  • Page 785: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.13.3 Settings Table 605: AUTHMAN Non group settings (basic) Name Values (Range) Unit Step Default Description MaintMenuEnable Maintenance menu enabled AuthTimeout 10 Min 10 Min Authority blocking timeout 20 Min 30 Min 40 Min 50 Min 60 Min...
  • Page 786: Settings

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.14.3 Settings Table 606: FTPACCS Non group settings (basic) Name Values (Range) Unit Step Default Description PortSelection None Front+LAN1 Port selection for communication Front LAN1 Front+LAN1 SSLMode FTP+FTPS FTPS Support for AUTH TLS/SSL FTPS TCPPortFTP 1 - 65535...
  • Page 787: Signals

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.15.4 Signals Table 607: ATHSTAT Output signals Name Type Description USRBLKED BOOLEAN At least one user is blocked by invalid password LOGGEDON BOOLEAN At least one user is logged on 17.15.5 Settings The function does not have any parameters available in Local HMI or Protection and Control IED Manager (PCM600)
  • Page 788: Denial Of Service, Frame Rate Control For Front Port Dosfrnt

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.16.2 Denial of service, frame rate control for front port DOSFRNT 17.16.2.1 Identification Function description IEC 61850 IEC 60617 ANSI/IEEE C37.2 identification identification device number Denial of service, frame rate control for DOSFRNT front port 17.16.2.2...
  • Page 789: Monitored Data

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.16.2.5 Monitored data Table 609: DOSFRNT Monitored data Name Type Values (Range) Unit Description State INTEGER 0=Off Frame rate control state 1=Normal 2=Throttle 3=DiscardLow 4=DiscardAll 5=StopPoll Quota INTEGER Quota level in percent 0-100 IPPackRecNorm INTEGER Number of IP packets...
  • Page 790: Signals

    Section 17 1MRK 506 335-UUS A Basic IED functions 17.16.3.3 Signals Table 610: DOSLAN1 Output signals Name Type Description LINKUP BOOLEAN Ethernet link status WARNING BOOLEAN Frame rate is higher than normal state ALARM BOOLEAN Frame rate is higher than throttle state 17.16.3.4 Settings The function does not have any parameters available in the local HMI or PCM600.
  • Page 791 Section 17 1MRK 506 335-UUS A Basic IED functions • LINKUP indicates the Ethernet link status • WARNING indicates that communication (frame rate) is higher than normal • ALARM indicates that the IED limits communication Technical manual...
  • Page 793: Protective Ground Connections

    Section 18 1MRK 506 335-UUS A IED physical connections Section 18 IED physical connections 18.1 Protective ground connections The IED shall be grounded with a 6 Gauge flat copper cable. The ground lead should be as short as possible, less than 59.06 inches (1500 mm).
  • Page 794: Inputs

    Section 18 1MRK 506 335-UUS A IED physical connections 18.2 Inputs 18.2.1 Measuring inputs Table 612: Analog input modules TRM Terminal 6I + 4U 8I + 2U 4I + 1I + 5U 4I + 6U X101-1, 2 1/5A 1/5A 1/5A 1/5A X101-3, 4 1/5A...
  • Page 795: Auxiliary Supply Voltage Input

    Section 18 1MRK 506 335-UUS A IED physical connections 18.2.2 Auxiliary supply voltage input The auxiliary voltage of the IED is connected to terminals X420-1 and X420-2/3. The terminals used depend on the power supply. The permitted auxiliary voltage range of the IED is marked on top of the IED's LHMI. Table 614: Auxiliary voltage supply of 110...250 V DC or 100...240 V AC Case...
  • Page 796 Section 18 1MRK 506 335-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X304-6 Binary input 4 + COM_101 X304-7 Binary input 5 + COM_101 X304-8 Binary input 6 + COM_101 X304-9 Common - for inputs 7-9 X304-10 Binary input 7 + COM_101...
  • Page 797 Section 18 1MRK 506 335-UUS A IED physical connections Table 619: Binary inputs X329, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X329-1 - for input 1 BIO_4 X329-2 Binary input 1 + BIO_4 X329-3 X329-4 Common - for inputs 2-3 X329-5 Binary input 2 +...
  • Page 798 Section 18 1MRK 506 335-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X334-11 X334-12 Common - for inputs 6-7 X334-13 Binary input 6 + BIO_5 X334-14 Binary input 7 + BIO_5 X334-15 X334-16 Common - for inputs 8-9 X334-17 Binary input 8 + BIO_5...
  • Page 799: Outputs

    Section 18 1MRK 506 335-UUS A IED physical connections 18.3 Outputs 18.3.1 Outputs for tripping, controlling and signalling Output contacts PO1, PO2 and PO3 are power output contacts used, for example, for controlling circuit breakers. Each signal connector terminal is connected with one 14 or 16 Gauge wire. Use 12 or 14 Gauge wire for CB trip circuit.
  • Page 800 Section 18 1MRK 506 335-UUS A IED physical connections Table 623: Output contacts X321, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X321-1 Power output 1, normally open BIO_3 BO1_PO X321-2 X321-3 Power output 2, normally open BIO_3 BO2_PO X321-4...
  • Page 801: Outputs For Signalling

    Section 18 1MRK 506 335-UUS A IED physical connections Table 626: Output contacts X336, 3U full 19” Terminal Description PCM600 info Hardware module Hardware channel instance X336-1 Power output 1, normally open BIO_6 BO1_PO X336-2 X336-3 Power output 2, normally open BIO_6 BO2_PO X336-4...
  • Page 802 Section 18 1MRK 506 335-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X321-12 Signal output 3 X321-13 Signal output 4, normally open BIO_3 BO7_SO X321-14 Signal output 5, normally open BIO_3 BO8_SO X321-15 Signal outputs 4 and 5, common X321-16 Signal output 6, normally closed BIO_3...
  • Page 803 Section 18 1MRK 506 335-UUS A IED physical connections Terminal Description PCM600 info Hardware module Hardware channel instance X331-12 Signal output 3 X331-13 Signal output 4, normally open BIO_5 BO7_SO X331-14 Signal output 5, normally open BIO_5 BO8_SO X331-15 Signal outputs 4 and 5, common X331-16 Signal output 6, normally closed BIO_5...
  • Page 804: Communication Connections

    Section 18 1MRK 506 335-UUS A IED physical connections Table 632: IRF contact X319 Case Terminal Description 3U full 19” X319-1 Closed; no IRF, and V connected X319-2 Closed; IRF, or V disconnected X319-3 IRF, common 18.4 Communication connections The IED's LHMI is provided with an RJ-45 connector. The connector is intended for configuration and setting purposes.
  • Page 805: Station Communication Rear Connection

    Section 18 1MRK 506 335-UUS A IED physical connections 18.4.2 Station communication rear connection The default IP address of the IED through the Ethernet connection is 192.168.1.10. The physical connector is X1/LAN1. The interface speed is 100 Mbps for the 100BASE-FX LC alternative.
  • Page 806: Communication Interfaces And Protocols

    ● ● ● = Supported 18.4.6 Recommended industrial Ethernet switches ABB recommends ABB industrial Ethernet switches. 18.5 Connection diagrams The connection diagrams are delivered on the IED Connectivity package DVD as part of the product delivery. The latest versions of the connection diagrams can be downloaded from http://www.abb.com/substationautomation.
  • Page 807: Dimensions

    Section 19 1MRK 506 335-UUS A Technical data Section 19 Technical data 19.1 Dimensions Table 634: Dimensions of the IED - 3U full 19" rack Description Value Width 17.48 inches (444 mm) Height 5.20 inches (132 mm), 3U Depth 9.82 inches (249.5 mm) Weight box <22.04 lbs (10 kg) 19.2...
  • Page 808: Energizing Inputs

    Section 19 1MRK 506 335-UUS A Technical data 19.3 Energizing inputs Table 636: TRM — Energizing quantities, rated values and limits for transformer inputs Description Value Frequency Rated frequency f 50 or 60 Hz Operating range ± 10% Current inputs Rated current I 0.1 or 0.5 A 1 or 5 A...
  • Page 809: Binary Inputs

    Section 19 1MRK 506 335-UUS A Technical data 19.4 Binary inputs Table 637: Binary inputs Description Value Operating range Maximum input voltage 300 V DC Rated voltage 24...250 V DC Current drain 1.6...1.8 mA Power consumption/input <0.38 W Threshold voltage 15...221 V DC (parametrizable in the range in steps of 1% of the rated voltage) 19.5...
  • Page 810: Data Communication Interfaces

    Section 19 1MRK 506 335-UUS A Technical data Table 640: Power output relays with TCM function Description Value Rated voltage 250 V DC Continuous contact carry Make and carry for 3.0 s 15 A Make and carry for 0.5 s 30 A Breaking capacity when the control-circuit time ≤1 A/≤0.3 A/≤0.1 A...
  • Page 811: Enclosure Class

    Section 19 1MRK 506 335-UUS A Technical data Table 644: IRIG-B Type Value Accuracy Input impedance 430 Ohm Minimum input voltage 4.3 V HIGH Maximum input voltage 0.8 V Table 645: EIA-485 interface Type Value Conditions Minimum differential 1.5 V –...
  • Page 812: Ingress Protection

    Section 19 1MRK 506 335-UUS A Technical data 19.9 Ingress protection Table 648: Ingress protection Description Value IED front IP 54 IED rear IP 20 IED sides IP 40 IED top IP 40 IED bottom IP 20 19.10 Environmental conditions and tests Table 649: Environmental conditions Description...
  • Page 813: Section 20 Ied And Functionality Tests

    Section 20 1MRK 506 335-UUS A IED and functionality tests Section 20 IED and functionality tests 20.1 Electromagnetic compatibility tests Table 651: Electromagnetic compatibility tests Description Type test value Reference 100 kHz and 1 MHz burst IEC 61000-4-18, level 3 disturbance test IEC 60255-22-1 ANSI C37.90.1-2012...
  • Page 814 Section 20 1MRK 506 335-UUS A IED and functionality tests Description Type test value Reference Power frequency (50 Hz) IEC 61000-4-8, level 5 magnetic field • 1000 A/m • Continuous 100 A/m Pulse magnetic field immunity 1000A/m IEC 61000–4–9, level 5 test Damped oscillatory magnetic 100A/m, 100 kHz and 1MHz...
  • Page 815: Insulation Tests

    Section 20 1MRK 506 335-UUS A IED and functionality tests Description Type test value Reference 88 – 216 MHz < 43,52 dB(µV/m) quasi peak, measured at 10 m distance 216 – 960 MHz < 46,44 dB(µV/m) quasi peak, measured at 10 m distance 960 –...
  • Page 816: Product Safety

    Section 20 1MRK 506 335-UUS A IED and functionality tests Description Reference Requirement Shock withstand test IEC 60255-21-2 Class 1 Bump test IEC 60255-21-2 Class 1 Seismic test IEC 60255-21-3 Class 2 20.4 Product safety Table 654: Product safety Description Reference LV directive 2006/95/EC...
  • Page 817: Section 21 Time Inverse Characteristics

    Section 21 1MRK 506 335-UUS A Time inverse characteristics Section 21 Time inverse characteristics 21.1 Application In order to assure time selectivity between different overcurrent protections in different points in the network different time delays for the different relays are normally used. The simplest way to do this is to use definite time delay.
  • Page 818 Section 21 1MRK 506 335-UUS A Time inverse characteristics Time Fault point position en05000131.vsd IEC05000131 V1 EN Figure 365: Inverse time overcurrent characteristics with inst. function The inverse time characteristic makes it possible to minimize the fault clearance time and still assure the selectivity between protections.
  • Page 819 Section 21 1MRK 506 335-UUS A Time inverse characteristics Feeder Time axis en05000132_ansi.vsd ANSI05000132 V1 EN Figure 366: Selectivity steps for a fault on feeder B1 where: is The fault occurs is Protection B1 trips is Breaker at B1 opens is Protection A1 resets In the case protection B1 shall operate without any intentional delay (instantaneous).
  • Page 820: Operation Principle

    Section 21 1MRK 506 335-UUS A Time inverse characteristics • If there is a risk of intermittent faults. If the current relay, close to the faults, picks up and resets there is a risk of unselective trip from other protections in the system. •...
  • Page 821 Section 21 1MRK 506 335-UUS A Time inverse characteristics For inverse time characteristics a time will be initiated when the current reaches the set pickup level. From the general expression of the characteristic the following can be seen: æ ö æ...
  • Page 822 Section 21 1MRK 506 335-UUS A Time inverse characteristics For the IEC curves there is also a setting of the minimum time-lag of operation, see figure 367. Operate time tMin Current IMin IEC05000133-3-en.vsd IEC05000133 V2 EN Figure 367: Minimum time-lag operation for the IEC curves In order to fully comply with IEC curves definition setting parameter tMin shall be set to the value which is equal to the operating time of the selected IEC inverse time curve for measured current of twenty times the set current pickup value.
  • Page 823: Inverse Time Characteristics

    Section 21 1MRK 506 335-UUS A Time inverse characteristics æ ö ç ÷ ç ÷ Pickupn ç ÷ ç ÷ × 0.339 0.235 è ø (Equation 120) EQUATION1647 V1 EN where: Pickupn is the set pickup current for step n is set time multiplier for step n is the measured current The RD inverse curve gives a logarithmic delay, as used in the Combiflex protection...
  • Page 824 Section 21 1MRK 506 335-UUS A Time inverse characteristics Table 656: ANSI Inverse time characteristics Function Range or value Accuracy Operating characteristic: td = (0.05-999) in steps of 0.01 æ ö ç ÷ × ç ÷ è ø EQUATION1651 V1 EN I = I measured ANSI Extremely Inverse...
  • Page 825 Section 21 1MRK 506 335-UUS A Time inverse characteristics Table 658: RI and RD type inverse time characteristics Function Range or value Accuracy RI type inverse characteristic td = (0.05-999) in steps of 0.01 × 0.236 0.339 EQUATION1656 V1 EN I = I measured RD type logarithmic inverse characteristic...
  • Page 826 Section 21 1MRK 506 335-UUS A Time inverse characteristics Table 660: Inverse time characteristics for undervoltage protection Function Range or value Accuracy Type A curve: td = (0.05-1.10) in steps of ±5% +60 ms 0.01 æ ö VPickup V ç ÷...
  • Page 827 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070750 V2 EN Figure 368: ANSI Extremely inverse time characteristics Technical manual...
  • Page 828 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070751 V2 EN Figure 369: ANSI Very inverse time characteristics Technical manual...
  • Page 829 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070752 V2 EN Figure 370: ANSI Normal inverse time characteristics Technical manual...
  • Page 830 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070753 V2 EN Figure 371: ANSI Moderately inverse time characteristics Technical manual...
  • Page 831 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070817 V2 EN Figure 372: ANSI Long time extremely inverse time characteristics Technical manual...
  • Page 832 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070818 V2 EN Figure 373: ANSI Long time very inverse time characteristics Technical manual...
  • Page 833 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070819 V2 EN Figure 374: ANSI Long time inverse time characteristics Technical manual...
  • Page 834 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070820 V2 EN Figure 375: IEC Normal inverse time characteristics Technical manual...
  • Page 835 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070821 V2 EN Figure 376: IEC Very inverse time characteristics Technical manual...
  • Page 836 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070822 V2 EN Figure 377: IEC Inverse time characteristics Technical manual...
  • Page 837 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070823 V2 EN Figure 378: IEC Extremely inverse time characteristics Technical manual...
  • Page 838 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070824 V2 EN Figure 379: IEC Short time inverse time characteristics Technical manual...
  • Page 839 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070825 V2 EN Figure 380: IEC Long time inverse time characteristics Technical manual...
  • Page 840 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070826 V2 EN Figure 381: RI-type inverse time characteristics Technical manual...
  • Page 841 Section 21 1MRK 506 335-UUS A Time inverse characteristics A070827 V2 EN Figure 382: RD-type inverse time characteristics Technical manual...
  • Page 842 Section 21 1MRK 506 335-UUS A Time inverse characteristics GUID-ACF4044C-052E-4CBD-8247-C6ABE3796FA6 V1 EN Figure 383: Inverse curve A characteristic of overvoltage protection Technical manual...
  • Page 843 Section 21 1MRK 506 335-UUS A Time inverse characteristics GUID-F5E0E1C2-48C8-4DC7-A84B-174544C09142 V1 EN Figure 384: Inverse curve B characteristic of overvoltage protection Technical manual...
  • Page 844 Section 21 1MRK 506 335-UUS A Time inverse characteristics GUID-A9898DB7-90A3-47F2-AEF9-45FF148CB679 V1 EN Figure 385: Inverse curve C characteristic of overvoltage protection Technical manual...
  • Page 845 Section 21 1MRK 506 335-UUS A Time inverse characteristics GUID-35F40C3B-B483-40E6-9767-69C1536E3CBC V1 EN Figure 386: Inverse curve A characteristic of undervoltage protection Technical manual...
  • Page 846 Section 21 1MRK 506 335-UUS A Time inverse characteristics GUID-B55D0F5F-9265-4D9A-A7C0-E274AA3A6BB1 V1 EN Figure 387: Inverse curve B characteristic of undervoltage protection Technical manual...
  • Page 847: Section 22 Glossary

    Section 22 1MRK 506 335-UUS A Glossary Section 22 Glossary Alternating current Actual channel Application configuration tool within PCM600 A/D converter Analog-to-digital converter ADBS Amplitude deadband supervision Analog input ANSI American National Standards Institute Autoreclosing ASCT Auxiliary summation current transformer Adaptive signal detection ASDU Application service data unit...
  • Page 848 Section 22 1MRK 506 335-UUS A Glossary COMTRADE Standard Common Format for Transient Data Exchange format for Disturbance recorder according to IEEE/ANSI C37.111, 1999 / IEC60255-24 Cause of transmission Central processing unit Carrier receive Cyclic redundancy check CROB Control relay output block Carrier send Current transformer Communication unit...
  • Page 849 Section 22 1MRK 506 335-UUS A Glossary Electromagnetic interference EnFP End fault protection Enhanced performance architecture Electrostatic discharge F-SMA Type of optical fibre connector Fault number Flow control bit; Frame count bit FOX 20 Modular 20 channel telecommunication system for speech, data and protection signals FOX 512/515 Access multiplexer...
  • Page 850 Section 22 1MRK 506 335-UUS A Glossary IEC 60870-5-103 Communication standard for protective equipment. A serial master/slave protocol for point-to-point communication IEC 61850 Substation automation communication standard IEC 61850–8–1 Communication protocol standard IEEE Institute of Electrical and Electronics Engineers IEEE 802.12 A network technology standard that provides 100 Mbits/s on twisted-pair or optical fiber cable IEEE P1386.1...
  • Page 851 Section 22 1MRK 506 335-UUS A Glossary IRIG-B: InterRange Instrumentation Group Time code format B, standard 200 International Telecommunications Union Local area network Liquid crystal display Local detection device Light-emitting diode LON network tool Miniature circuit breaker MVAL Value of measurement National Control Centre Number of grid faults Numerical module...
  • Page 852 Section 22 1MRK 506 335-UUS A Glossary PT ratio Potential transformer or voltage transformer ratio PUTT Permissive underreach transfer trip Relay characteristic angle RISC Reduced instruction set computer RMS value Root mean square value RS422 A balanced serial interface for the transmission of digital data in point-to-point connections RS485 Serial link according to EIA standard RS485...
  • Page 853 Section 22 1MRK 506 335-UUS A Glossary Trip coil Trip circuit supervision Transmission control protocol. The most common transport layer protocol used on Ethernet and the Internet. TCP/IP Transmission control protocol over Internet Protocol. The de facto standard Ethernet protocols incorporated into 4.2BSD Unix.
  • Page 854 Section 22 1MRK 506 335-UUS A Glossary Coordinated Universal Time is expressed using a 24-hour clock, and uses the Gregorian calendar. It is used for aeroplane and ship navigation, where it is also sometimes known by the military name, "Zulu time." "Zulu" in the phonetic alphabet stands for "Z", which stands for longitude zero.
  • Page 856 Any reproduction, Phone +46 (0) 21 32 50 00 disclosure to third parties or utilization of its contents – in whole or in part – is forbidden without prior written consent of ABB AB. www.abb.com/protection-control © Copyright 2013 ABB.

Table of Contents